1) а1=-2 , d=3 , an=118-?
an=a1+(n-1)d
118= -2+(n-1)3
118= -2+3n-3
118 +5=3n
3n=123
n=41
a41=a1+40d= -2 + 120= 118 - является 41 членом арифметической прогрессии.
2) а39=83 ,d= -2 ,a1-?
a39=a1+ 38d
a1= a39 - 38d
a1= 83 - 38•(-2)=83 + 76=159
ответ: а1 = 159
3) а21= - 156, а34= -260, а1-? d-?
a21=a1 +20d --- a1=a21- 20d
a34=a1 +33d --- a1=a34- 33d
a1=a1
a21 -20d=a34 -33d
-20d+33d=a34-a21
13d= -260+156
13d=-104
d=-8
a1=a21-20d= -156-20•(-8)=-156+160= 4
ИЛИ:
а34=а1 + 33d
a34=a21+13d
a34-a21=13d
-260+156=13d
-104=13d
d=-8
a1=a34-33d=-260-33•(-8)=-260+264=4
Объяснение:
а) log₅ (x + 4) = log₅ 25
Область допустимых значений: (ОДЗ)
x + 4 > 0
x > - 4
"Опустим" логарифмы, так как у них одинаковые основания:
x + 4 = 25
x = 21
Это значение входит в ОДЗ, значит, мы получили ответ
б) log₂ (x + 2) = log₂ (x² + x - 7)
Здесь проще сразу опустить логарифмы, сделав в конце проверку для каждого корня:
x + 2 = x² + x - 7
2 = x² - 7
x² = 9
x = ±3
Для x = 3:
log₂ (3 + 2) = log₂ (9 + 3 - 7)
log₂5 = log₂5
Этот корень входит в решение.
Для x = -3
log₂ (-3 + 2) = log₂ (9 - 3 - 7)
log₂ (-1) = log₂ (-1)
Логарифма отрицательно числа не существует, значит, x = -3 не является корнем уравнения:
ответ: x = 3
в) log (1/3) (2x + 1) = -1
ОДЗ: 2x + 1 > 0
2x > - 1
x > -1/2
Вынесем степень -1 из одной третьей:
-log₃ (2x + 1) = -1
log₃ (2x + 1) = 1
Представим единицу как log₃3 и опустим логарифмы:
log₃ (2x + 1) = log₃3
2x + 1 = 3
2x = 2
x = 1
Этот корень входит в ОДЗ, значит, это наш ответ