23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Прощу прощения за задержку. Разложить на множители, это означает упростить данное выражение. В данном выражении, мы можем увидеть общие множители abc . Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже. Поэтому не имеет смысла несколько раз упрощать и упрощать. Поступаем так: Находим минимальную степень а, b и с. И получаем, что можно упростить так: Можем так же заметить что 27 и 36 делятся на 9. А значит имеем право упростить еще : Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число