Задача 1
Пусть x км/ч - собственная скорость лодки
Тогда (x + 2) км/ч - скорость лодки по течению
(x - 2) км/ч - скорость лодки против течения
Составим уравнение:
(x + 2) * 7 + (x - 2) * 3 = 138
7x + 14 + 3x - 6 = 138
10x + 8 = 138
10x = 138 - 8
10x = 130
x = 130 : 10
x = 13 (км/ч)
ответ: 13 км/ч - собственная скорость лодки.
Задача 2
Пусть x деталей изготовил первый цех
Тогда 1,5x деталей - второй цех
(1,5x - 65) деталей - третий цех
Всего деталей - 655 шт.
Составим уравнение:
x + 1,5x + (1,5x - 65) = 655
x + 1,5x + 1,5x - 65 = 655
4x - 65 = 655
4x = 655 + 65
4x = 720
x = 720 : 4
x = 180 (дет.) первый цех
1,5x = 1,5 * 180 = 270 (дет.) второй цех
(1,5x - 65) = 270 - 65 = 205 (дет.) третий цех
ответ: 180 деталей - первый цех, 270 деталей - второй цех, 205 деталей - третий цех.
Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1.
Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел.
Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью.
Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж