Найдите а и b из тождества: Докажите, что если , то верны следующие производные пропорции: +- (это плюс минус сразу) / - это дробь а) a+-b/a = c+-d/c б) a+-c/b+-d=a/b=c/d в) a+b/a-b=c+d/c-d г) a/b=na+mc/nb+md
Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение () при условии ограничений на сырье и того, что нам надо произвести хоть что-то:
Эти четыре неравенства задают заштрихованный под прямыми четырехугольник в первом квадранте.
Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник: . Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.
Наибольшая прибыль = 7 денежных единиц
Объяснение:
Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение (
) при условии ограничений на сырье и того, что нам надо произвести хоть что-то: 
Эти четыре неравенства задают заштрихованный под прямыми
четырехугольник в первом квадранте.
Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник:
. Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.