Объяснение:
Рассмотрим случай x ≤ 0
Тогда функция принимает значение
Попробуем выразить явно функцию. Для этого выделим полный квадрат в правой части:
Теперь,
Для x ≤ 0 соответствует корень, взятый с отрицательным знаком. Поэтому обратная функция (просто в полученной функции меняем местами x и y), получим:
.
Т.к. y ≤ 0, найдем соответствующее значение x:
Один кусочек нашли, займемся другим
При x ≥ 0 у нас функция принимает значение:
Выразим x через y, и после этого поменяем их местами
Т.е.
Поскольку y ≥ 0, найдем x, соответствующий этой обратной функции
Соединяя все воедино, получим следующую кусочно-заданную функцию:
8
Объяснение:
Сложим два равенства, получим уравнение:
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8
Имеем линейную функцию y=0,125*х где её угловой коэффициент k1=0,125.
Для прямой, перпендикулярной заданной свойственно: k1*k2=-1.
Откуда находим k2=(-1)/k1=(-1)/0,125=-8.
Тогда уравнение искомой прямой имеет вид: y=-8*х+b, где b - произвольное число. По условию искомая прямая касается параболы у=x^2-1, т.е. имеет с ней одну общую точку. Следовательно уравнение: x^2-1= -8*х+b должно имееть единственный корень. Преобразуем уравнение, получим: x^2+8*х-b-1=0. Выделяя полный квадрат, получим:
(x+4)^2-16-b-1=0. Тогда, чтобы ур-ние имело единственный корень, должно выполняться: -16-b-1=0. Откуда b=-17. И тогда из (x+4)^2=0 имеем: x0=-4 - абсцисса искомой точки касания нашей прямой к параболе, а её ордината равна: y0=-8*х0-17=-8*(-4)-17=32-17=15.
Таким образом координаты точки касания: (-4;15).
ответ: (-4;15).