Всё решается просто. так как cos2x=2*(cosx)^2-1 (эту формулу можно найти в учебнике или доказать) , то подставляя в уравнение получим: cos2x+4cosx-5=0 2*(cosx)^2-1+4cosx-5=0 (cosx)^2+2(cosx)-3=0 это простое квадратное уравнение относительно cosx. то есть получается два решения: cosx=1 и cosx=-3 но подходит только одно решение cosx=1, так как |cosx|< =1 осталось решить простое тригонометрическое уравнение cosx=1, по формуле тригонометрии cosx=a, x=(+/-)arccosa+2*pi*n pi-это знаменитое число 3,14159 n-любое целое число вот и всё решение.
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
х=10,у=-10
Объяснение:
Умножить второе уравнение на -4 и сложить оба уравнения
4,8х+2,5у=23
-4,8х+2у=-68
Получаем
4,5у=-45
у=-10
Теперь найдем х
1,2х-0,5*(-10)=17
1,2х=12
х=10