10/25-x^2 - 1/5+x - x/x-5 = 0
По формулам сокращенного умножения (а^2 - в^2) = (а + в)(а - в)
10/(5-х)(5+х) - 1/(5+x) + x/(5-х) = 0 (здесь поменяли знак на +, и дробь изменилась)
Общий знаменатель (5-х)(5+х)
Получаем в числителе Знаменатель
10-5+х+5х+х^2 = 0 (5-х)(5+х) не равно 0
х^2+6х+5 = 0 5-х не равно 0, х не равен 5
Д = 36-4*1*5 = 36-20 = 16 5+х не равно 0, х не равен -5
х1 = (-6+4) / 2 = -1
х2 = (-6-4) / 2 = -5 не берем
ответ: х = -1
В решении.
Объяснение:
График функции, заданной уравнением у=(a + 1)x + а - 1 пересекает ось абсцисс в точке с координатами (-5; 0);
а) Найдите значение а;
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6
а = -6/4 (деление)
а = -1,5;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
c) Не выполняя построения графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.