х1= 2; у1=1
х2=1/3; у2=6
или
ответ: (2; 1) и (1/3; 6)
Объяснение:
(xy)^2 - 7xy + 10 = 0
3x + y = 7
Рассмотрим 1 уравнение,
(xy)^2 - 7xy + 10 = 0
заменим ху на t
Получим:
t^2 - 7t + 10 = 0
D= 7^2 - 4•10 = 49-40=9>0
t1= (7+√9)/2= 10/2=5
t2= (7-√9)/2 = 4/2=2
Два корня дают 2 системы:
1)
ху=5
3х+у=7 <=> у=7-3х
2)
ху=2
3х+у=7 <=> у=7-3х
решим 1).
ху=5
у=7-3х
Заменим в верхнем уравнении
у на 7-3х:
х(7-3х)=5
7х - 3х^2 - 5 = 0
3х^2 - 7х + 5 = 0
D = 7^2 - 4•3•5= 49-60=-11<0
Корней нет.
Решим 2):
ху=2
у=7-3х
Заменим в верхнем уравнении
у на 7-3х:
х(7-3х)=2
7х - 3х^2 - 2 = 0
3х^2 - 7х + 2 = 0
D = 7^2 - 4•3•2= 49-24=25 > 0
х1 = (7+√(25))/(2•3) = 12/6 = 2
у1 = 7-3х= 7-3•2= 7-6=1
х2= (7-√(25))/(2•3)= 2/6= 1/3
у2 = 7-3х = 7 - (3•1/3)=6
х1= 2; у1=1
х2=1/3; у2=6
График
Точки пересечения с осью ОХ:
Графики функций
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.