М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olgaerchik
olgaerchik
28.04.2021 22:41 •  Алгебра

Дана таблица относительных частот. Найди значение k. Построй полигон абсолютных частот, если известно, что объем выборки равен 17.


Дана таблица относительных частот. Найди значение k. Построй полигон абсолютных частот, если известн

👇
Открыть все ответы
Ответ:
pashkevich00
pashkevich00
28.04.2021

Два натуральных числа 16; 24.

Объяснение:

Найти два натуральных числа по заданным условиям.

Пусть первое число равно x, а второе равно y.

Тогда сумма их квадратов: x² + y² = 832,

а их произведение xy = 384.

Чтобы найти эти числа, решим систему уравнений.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 . \end{cases}

Умножим обе части второго уравнения системы на 2.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 \;\;|\cdot 2 \end{cases}; \;\;\; \; \displaystyle \begin{cases} x^2 + y^2 = 832 \\ 2xy=768 \end{cases}

Сложим оба уравнения системы:

\displaystyle +\begin{cases}x^2 + y^2 = 832\\2xy=768 \end{cases} \\\displaystyle \overline{x^2 +2xy+ y^2 = 1600}

Свернем левую часть уравнения по формуле квадрата суммы двух выражений:  

\displaystyle (x+y)^2 = 40^{2}

Получим следующую систему уравнений:

\displaystyle \begin{cases} (x+y)^2 = 40^{2} \\ xy=384 \end{cases}

Извлечем квадратный корень из обеих частей первого уравнения.

С учетом того, что нам даны натуральные числа, получим следующую систему уравнений:

\displaystyle \begin{cases} x+y = 40 \\ xy=384 \end{cases}

Выразим переменную y через x в первом уравнении и подставим полученное выражение во второе уравнение.

\displaystyle \begin{cases} y = 40 -x\\ x(40-x)=384 \end{cases};

\displaystyle \begin{cases} y = 40 -x\\ 40x -x^2=384 \end{cases}

Решим второе уравнение системы.

\displaystyle x^2 -40x +384 = 0;\\\displaystyle D = b^{2} - 4ac \\D= 40^{2} -4\cdot 40 \cdot 384 =1600-1536=64=8^2;\\\\\displaystyle x_{1,2} =\frac{-b\pm\sqrt{D} }{2a};\\\displaystyle x_{1} =\frac{40-8}{2}=16;\\\displaystyle x_{2} =\frac{40+8}{2}=24.

Тогда

\displaystyle \begin{cases} x_{1}=16\\y_{1} = 40-16 \end{cases};\;\;\;\displaystyle \begin{cases} x_{1}=16\\y_{1} = 24 \end{cases};\\\\\displaystyle \begin{cases} x_{2}=24\\y_{2} = 40-24 \end{cases};\;\;\;\displaystyle \begin{cases} x_{2}=24\\y_{2}=16 \end{cases}

Заданные натуральные числа 16 и 24.

4,7(79 оценок)
Ответ:
alexandrsub67p08sqm
alexandrsub67p08sqm
28.04.2021

#1. |2x-3|=3-2x, если х<3/2;   |2x-3|=2x-3, если х≥3/2;   

|x-2|=2-x, если х<2;   |x-2|=-2x, если х≥2;

|x-6|=6-x, если х<6;   |x-6|=x-6, если х≥6.

Получаем три случая:

1) на множестве (-∞;3/2)U[2;6) получаем неравенство

(2х-3)(х-2)≥(6-х)+2

2х²-3х-4х+6-6+х-2≥0

2х²-6х-2≥0

х²-3х-1≥0

D=9+4=13

(x-\frac{3-\sqrt{13}}{2})(x-\frac{3+\sqrt{13}}{2})\geq0 \\\ x \in (-\infty; \frac{3-\sqrt{13}}{2}] \cup [\frac{3+\sqrt{13}}{2}; +\infty)

C учётом (-∞;3/2)U[2;6) получим x \in (-\infty; \frac{3-\sqrt{13}}{2}]

2) на интервале 1,5≤х<2 получим неравенство

(2х-3)(2-х)≥(6-х)+2

4х-6-2х²+3х-6+х-2≥0

-2х²+8х-14≥0

х²-4х+7≤0

D=16-28<0

решений нет

3) на интервале х≥6 получим неравенство

(2х-3)(х-2)≥(х-6)+2

2х²-3х-4х+6+6-х-2≥0

2х²-8х+10≥0

х²-4х+5≥0

D=16-20<0

решений нет

ответ: x \in (-\infty; \frac{3-\sqrt{13}}{2}]

 

#2. Пусть ∆АВС-прямоугольный треугольник с гипотенузой АВ, катетами АС и ВС.

По условию ВС+АВ=11, tg В = 3/4.

 

По определению тангенса острого угла прямоугольного треугольника

tg B=AC/BC=3/4   => 3BC=4AC   => AC=\frac{3}{4}BC

 

По теореме Пифагора АВ² = АС² + ВС²

Пусть ВС=х, тогда АВ=11-х, АС=3х/4

(11-x)^2=(\frac{3}{4}x)^2+x^2 \\\ 121-22x+x^2=\frac{9}{16}x^2+x^2 \\\ \frac{9}{16}x^2+22x-121=0 \\\ 9x^2+352x-1936=0\\\ \frac{D}{4}=176^2+9*1936=30976+17424=48400 \\\ x_1=-44,\ x_2=\frac{44}{9}=4\frac{8}{9} \\\ BC=4\frac{8}{9} \\\ AC=\frac{3}{4}*\frac{44}{9}=\frac{11}{3}=3\frac{2}{3}\\\ P_{ABC}=AB+BC+AC=11+AC=11+3\frac{2}{3}=14\frac{2}{3}

ответ: 14\frac{2}{3}

4,5(32 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ