М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
palieva69
palieva69
20.04.2021 06:50 •  Алгебра

Игральную кость бросили один, два, три или четыре раза. Оказалось, что сумма всех выпавших очков равна 6. Какова вероятность того, что потребовалось сделать один бросок.

👇
Ответ:
timursharipov2006
timursharipov2006
20.04.2021

Пусть событие A - "выпало 6 очков", а событие B_i - "было произведено i бросков".

Предполагается, что количество бросков определяется случайно, то есть:

P(B_1)=P(B_2)=P(B_3)=P(B_4)=p=\dfrac{1}{4}

В данном случае конкретное числовое значение не столь важно, главное что оно одинаково для всех гипотез.

Для решения задачи понадобится формула Байеса:

P(B_1)\cdot P(A|B_1)=P(A)\cdot P(B_1|A)

Нам нужно найти вероятность того, что был 1 бросок, при условии того, что выпало 6 очков:

P(B_1|A)=\dfrac{P(B_1)\cdot P(A|B_1)}{P(A)}

Распишем полную вероятность:

P(B_1|A)=

=\dfrac{P(B_1)\cdot P(A|B_1)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(B_3)P(A|B_3)+P(B_4)P(A|B_4)}=

=\dfrac{p\cdot P(A|B_1)}{p\cdot P(A|B_1)+p\cdot P(A|B_2)+p\cdot P(A|B_3)+p\cdot P(A|B_4)}=

=\dfrac{P(A|B_1)}{P(A|B_1)+P(A|B_2)+P(A|B_3)+P(A|B_4)}

Найдем вероятности выпадения 6 очков при 1, 2, 3, 4 бросках.

При одном броске вероятность выпадения 6 очков, как и любого другого количества очков:

P(A|B_1)=\dfrac{1}{6}

При двух бросках, 6 очков может выпасть в следующих комбинациях:

{1; 5} - 2 вариант

(3; 3) - 1 вариант

{4; 2} - 2 вариант

Благоприятных вариантов - 5. Общее количество вариантов выпадения комбинации на двух кубиках равно 6^2.

P(A|B_2)=\dfrac{5}{6^2}

При трех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 4} - 3 варианта

(1; 2; 3) - 6 вариантов

Благоприятных вариантов - 9.Общее количество вариантов выпадения комбинации на трех кубиках равно 6^3.

P(A|B_3)=\dfrac{9}{6^3}

При четырех бросках, 6 очков может выпасть в следующих комбинациях:

{1; 1; 1; 3} - 4 варианта

(1; 1; 2; 2) - 6 вариантов

Благоприятных вариантов - 10.Общее количество вариантов выпадения комбинации на четырех кубиках равно 6^4.

P(A|B_4)=\dfrac{10}{6^4}

Таким образом, искомая вероятность:

P(B_1|A)=\dfrac{\dfrac{1}{6} }{\dfrac{1}{6}+\dfrac{5}{6^2}+\dfrac{9}{6^3}+\dfrac{10}{6^4}}=\dfrac{6^3}{6^3+5\cdot6^2+9\cdot6+10}=

=\dfrac{216}{216+180+54+10}=\dfrac{216}{460}=\dfrac{54}{115}

ответ: 54/115

4,4(83 оценок)
Открыть все ответы
Ответ:
mileven353
mileven353
20.04.2021

Объяснение:

Задание 2.

а) Координату х=5 будут иметь все точки , лежащие  на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5

б) Координату у=-3 будут иметь все точки , лежащие  на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3

рисунок 1 во вложении

Задание 3.

а) На координатной плоскости неравенство х ≥ 4  задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше  

рисунок 2 во вложении

б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные  полосы , которые имееют ординату 0 и 5  

рисунок 3 во вложении

Задание 4.

а) у = х;

найдем точки и построим график  

   х=0, у=0

   х=3 , у=3

   х=-3, у= -3

б) –3 ≤ х ≤ 3.

неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3

Изобразим множество точек на координатной плоскости

рисунок 4 во вложении

Задание 5

Решение во вложении

Задание 6

Если | x | ≤ 5 , значит    -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]

Отметим этот промежуток т.А и т.В  на координатной прямой ( рис. 5 во вложении)  

Отметим промежуток  –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D

Для того, чтобы определить  границы  промежутков [-5; 5] и [-7; 1] сравним левые  и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид:  х ϵ[-5; 1]


2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
4,8(90 оценок)
Ответ:
гуфиn
гуфиn
20.04.2021

Объяснение:

Задание 2.

а) Координату х=5 будут иметь все точки , лежащие  на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5

б) Координату у=-3 будут иметь все точки , лежащие  на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3

рисунок 1 во вложении

Задание 3.

а) На координатной плоскости неравенство х ≥ 4  задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше  

рисунок 2 во вложении

б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные  полосы , которые имееют ординату 0 и 5  

рисунок 3 во вложении

Задание 4.

а) у = х;

найдем точки и построим график  

   х=0, у=0

   х=3 , у=3

   х=-3, у= -3

б) –3 ≤ х ≤ 3.

неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3

Изобразим множество точек на координатной плоскости

рисунок 4 во вложении

Задание 5

Решение во вложении

Задание 6

Если | x | ≤ 5 , значит    -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]

Отметим этот промежуток т.А и т.В  на координатной прямой ( рис. 5 во вложении)  

Отметим промежуток  –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D

Для того, чтобы определить  границы  промежутков [-5; 5] и [-7; 1] сравним левые  и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид:  х ϵ[-5; 1]


2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
2. изобразите на координатной плоскости множество точек, координаты которых удовлетворяют условию: а
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ