Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.
1. x² + 3x + 2 = x² + 2x + 1 + x + 1 = (x² + 2x + 1) + (x + 1) = (x + 1)² + (x + 1) = (x + 1)(x + 1 + 1) = (x + 1)(x + 2).
Можно разложить на множители и с теоремы:
ах² + bx + c = a(x - x1)(x - x2), где х1 и х2 - корни квадратного трёхчлена.
2. (с - а)(с + а) - b(b - 2a) = c² - a² - b² + 2ab = c² - (a² + b² - 2ab) = c² - (a - b)² =
применим формулу разности квадратов двух выражений, получим
= (c - (a-b))(c + (a-b)) = (с-а+b)(c+a-b).
3. a² - 3ab + 2b² = a² - 2ab + b² - ab + b² = (a² - 2ab + b²) - (ab - b²) = (a - b)² - b(a - b) = (a - b)(a - b - b) =
= (a - b)(a - 2b).