В решении.
Объяснение:
835.
Решить уравнение:
9/(x - 11) + 11/(x - 9) = 2
Умножить все части уравнения на (х - 11)(х - 9), чтобы избавиться от дробного выражения:
9 * (x - 9) + 11 * (x - 11) = 2*(х - 11)(х - 9)
Раскрыть скобки:
9х - 81 + 11х - 121 = 2х² - 18х - 22х + 198
20х - 202 = 2х² - 40х + 198
-2х² + 40х + 20х - 202 - 198 = 0
-2х² + 60х - 400 = 0
Разделить уравнение на -2 для упрощения:
х² - 30х + 200 = 0, квадратное уравнение, ищем корни:
ОДЗ: х ≠ 11; х ≠ 9;
D=b²-4ac = 900 - 800 = 100 √D=10
х₁=(-b-√D)/2a
х₁=(30-10)/2
х₁=20/2
х₁=10;
х₂=(-b+√D)/2a
х₂=(30+10)/2
х₂=40/2
х₂=20;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5
5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.
11) найдите sin²a, если cos2a = 1/5
sin²a = (1 - cos2a)/2 = (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.
12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1
1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.
2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1
3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x = -3,5 (cos 2x - cos² x) - cos x = -3,5 (2cos²x - 1 - cos² x) - cos x = -3,5 (cos²x - 1) - cos x = 3,5 (1 - cos²x) - cos x = 3,5 sin²x - cos x
4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5
5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.
11) найдите sin²a, если cos2a = 1/5
sin²a = (1 - cos2a)/2 = (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.
12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1
Объяснение:
ОДЗ: x-11≠0 x≠11 x-9≠0 x≠9.
ответ: x₁=10 x₂=20.