Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³ Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0 Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим: Нам надо доказать ≥. Значит, будем смотреть разность и она должна быть ≥ 0 а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) = =(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒ ⇒ а⁴+b⁴ ≥ a³b+ab³
Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна a=16-х см. Площадь прямоугольника равна: S=a*b=60 см² Составим и решим уравнение: х(16-х)=60 16х-х²=60 х²-16х+60=0 D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4) х₁= = = 10 х₂= = = 6 ОТВЕТ: ширина листа равна 10 см; ширина листа равна 6 см.
По теореме Виета: х²-16х+60=0 х₁+х₂=16 х₁*х₂=60 х₁=10 х₂=6
Проверим: Ширина листа равна 10 см, длина 16 см. Вырезанный квадрат со стороной а=10 см. Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².
Ширина листа равна 6 см, длина 16 см. Вырезанный квадрат со стороной а=6 см. Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
Решение внизу. Где-то одз искала через замену, чтобы не считать
Объяснение: