М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mary17ice
Mary17ice
05.12.2020 10:25 •  Алгебра

Решите показательные неравенства 10^3x+1>0,01

👇
Ответ:

Решение задания прилагаю


Решите показательные неравенства 10^3x+1>0,01
4,7(42 оценок)
Ответ:
artempryadko2006
artempryadko2006
05.12.2020

Возможно, слева

10^(3x+1)>0.001

тогда справа

0.001=10"(-3)

основания уравнены. решаете неравенство, исходя из показателей степени.

тщательность набора условия ускоряет получение толково1й

4,4(85 оценок)
Открыть все ответы
Ответ:
Пусть событие А1- встретил черную кошку, Пусть событие А2- встретил злую собаку. Событие А3 не встретил ни кошку ни собаку и событие А4 встретил либо кошку либо собаку. 
Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,4-0,04=0,46P(A3)=1-P(A4)=1-0,46=0,54
Пусть событие А1- вызвали на первом уроке, событие А2- вызвали на втором уроке. Событие А3 не вызвали ни на первом ни на втором уроке, А4 вызвали хотя бы на одном из уроков. 
Р(А1UA2) = P(A4)=Р(А1)+Р(А2)-P(A1∩A2)=0,1+0,3-0,03=0,37Событие А3 противоположно событию А4, P(A3)=1-P(A4)=1-0,37=0,63
4,6(58 оценок)
Ответ:
dendeniska228
dendeniska228
05.12.2020
ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
4,8(40 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ