а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
Пусть первый рабочий выполняет заказ за х часов тогда второй выполняет заказ за х+4 часов
221/х столько деталей в час делает первый рабочий 221/(x+4) столько деталей делает в час второй рабочий
221/x=4 + 221/(x+4) 221/x=(221+4x+16)/(x+4) 221/x=(237+4x)/(x+4) это пропорция. произведения крайних членов пропорции равны 221(х+4)=(237+4х)х 221х+221*4=237х+4х² 4х²+16х-221*4=0 разделим все на 4 x²+4x-221=0 x1-2=(-4+-√(16+884))/2=(-4+-√900)/2=(-4+-30)/2 x=(-4+30)/2=26/2=13 второй корень не берем т.к. он <0
второй рабочий делает за час 221/(x+4)=221/(13+4)=221/17=13 деталей
cos^2(2x)=1/4
cos2x=1/2
cos2x=-1/2
2x=+-П/3+2Пk
x=+-П/6+Пk
2x=П+-П/3+2Пk
x=П/3+Пk
x=2П/3+Пk