М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

В трапеции ABCD точки M и N - середины боковых сторон AB и CD. Сравните углы BMN и CNM, если угол MAD меньше угла NDA

👇
Открыть все ответы
Ответ:
nyk156
nyk156
30.10.2022
В рассуждениях нужно использовать признаки делимости...
кратное 18 ---> оно делится на 2 и на 9
т.е. оно четное --- заканчивается на 0 или 2 или 4 или 6 или 8
и сумма цифр числа делится на 9 (это признак делимости на 9)))
получим варианты:
a b с d 0
a b с d 2
a b с d 4
a b с d 6
a b с d 8
и теперь второе условие: соседние цифры отличаются на 2
для первого варианта: a b с 2 0,     a b 0 2 0 или a b 4 2 0
a+b+2 = 9 или a+b+4+2 = 9
a+b = 7              a+b = 3 ---> 12420, например
18 * 690 = 12420
но, первые цифры не на 2 отличаются... не получилось...
но смысл рассуждений такой же)))
пробуем еще...
у меня получилось:
24246 / 18 = 1347
можно попробовать и еще найти...
4,6(94 оценок)
Ответ:
hvbdnnd
hvbdnnd
30.10.2022
По теореме, если у пирамиды равные двугранные углы при основании, тогда в многоугольник основания можно вписать окружность. В постановке задачи - доказать, что точка О - точка пересечения диагоналей, центр вписанной окружности - следовательно в основе лежит четырехугольник.Так как в четырехугольник можно вписать окружность, то это может быть одна из следующих фигур:
1. Квадрат
2. Ромб
3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай.
1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано.
2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано.
3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.

Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.
Докажите, что у пирамиды боковые грани которой наклонены к плоскости основания под одним углом, точк
4,5(91 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ