М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ленчикбарми
Ленчикбарми
21.12.2022 17:49 •  Алгебра

Как найти общий множитель одночлена

👇
Ответ:
Morkvap5
Morkvap5
21.12.2022
1 Определение общего множителя многочлена требуется при упрощении громоздких выражений, а также при решении уравнений высших степеней. Этот метод имеет смысл, если степень многочлена не ниже второй. При этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней.2 Чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. Простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. Очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – корень многочлена, равный 0.3 Более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. Тогда применимы простого подбора или группировки. Например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа:y^4 + 3·y³ – y² – 9·y – 18.4Выпишите все целочисленные делители свободного члена. Если у многочлена есть рациональные корни, то они находятся среди них. В результате подбора получаются корни 2 и -3. Значит, общими множителями этого многочлена будут двучлены (y - 2) и (y + 3).5Очевидно, что степень оставшегося многочлена при этом понизится с четвертой до второй. Чтобы получить его, проведите деление исходного многочлена последовательно на (y - 2) и (y + 3). Выполняется это подобно делению чисел, в столбик.6Метод вынесения общего множителя является одним из составляющих разложения на множители. Описанный выше применим, если коэффициент при старшей степени равен 1. Если это не так, то сначала необходимо выполнить ряд преобразований. Например:2y³ + 19·y² + 41·y + 15.7Выполните замену вида t = 2³·y³. Для этого умножьте все коэффициенты многочлена на 4:2³·y³ + 19·2²·y² + 82·2·y + 60. После замены: t³ + 19·t² + 82·t + 60. Теперь для поиска общего множителя применим вышеописанный Кроме того, эффективным методом поиска общего множителя является группировка элементов многочлена. Особенно он полезен, когда первый не работает, т.е. у многочлена нет рациональных корней. Однако реализация группировки не всегда бывает очевидной. Например:У многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней.9Воспользуйтесь группировкой:y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² - 2)*(y² + 4·y + 1).Общий множитель элементов этого многочлена (y² - 2).
4,6(53 оценок)
Открыть все ответы
Ответ:
Nuraaaykaaa
Nuraaaykaaa
21.12.2022
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
4,5(71 оценок)
Ответ:
dmukh
dmukh
21.12.2022
log_3(x+3)=log_3(x^2+2x-3)  ОДЗ: x+3>0 => x>-3
x+3=x^2+2x-3                                  x^2+2x-3>0
x^2+2x-3-x-3=0                                x^2+2x-3=0
x^2+x-6=0                                         x₁+x₂=-2
x₁+x₂=-1                                            x₁*x₂=-3
x₁*x₂=-6                                             x₁=-3; x₂=1 => x<-3; x>1
x₁=-3 - не входит в ОДЗ                             x>1
x₂=2
     x=2

 log_2(2x-1)-2=log_2(x+2)-log_2(x+1)              ОДЗ: 2x-1>0 => x>0.5
 log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1)                      x+2>0 => x>-2            log_2((2x-1)/4)=log((x+2)/(x+1))                                              x+1>0 => x>-1           (2x-1)/4=(x+2)/(x+1)                                                                         x>0.5
(2x-1)(x+1)=4(x+2)
2x^2+x-1-4x-8=0
2x^2-3x-9=0
D=(-3)^2-4*2*(-9)=81 √81=9
x₁=3
x₂=-1.5 - не входит в ОДЗ
     х=3

 log_5(2x^2-x)/log_4(2x+2)=0               ОДЗ: 2x^2-x>0 => x>0.5
log(4)log(2x^2-2)/log(5)log(2x+2)=0               2x+2>0 => x>-1   
log(2x^2-x)/log(2x+2)=0
log(2x^2-x)=0
log(2x+2)≠0
2x^2-x=1
2x^2-x-1=0
D=9
x₁=1
x₂=-0.5 - не входит в ОДЗ
     x=1

log_2x(x^2+x-2)=1                    ОДЗ: 2x>0 => x>0
log_2x(x^2+x-2)=log_2x(2x)                x^2+x-2>0
x^2+x-2=2x                                          x^2+x-2=0
x^2-x-2=0                                              x₁+x₂=-1
x₁+x₂=1                                                 x₁*x₂=-2
x₁*x₂=-2                                                x₁=-2; x₂=1
 x₁=2                                                            x>1
x₂=-1 - не входит в ОДЗ
     x=2
   

                                                                                                                                                                                                                             
                                                                         
                                                                            

                                                        
4,6(80 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ