Выразим из второго уравнения системы x через y. x=16+y теперь подставим это в первое уравнение системы. (16+y)^2-y^2=32 256+32y+y^2-y^2=32 256+32y=32 32y=32-256 32y=-224 y=-7 теперь найдем х х=16+y=16-7=9 ответ:(9;-7)
Пусть Т1, Т2 и Т3 время спуска, подъема и спуска по неподвижному эскалатору. Л – длина эскалатора, Вм – скорость мальчика, Вэ – скорость эскалатора. Имеем Т1(Вм+Вэ) = Л при движении по ходу эскалатора Т2(Вм-Вэ) = Л при движении против хода эскалатора, Далее приравниваем Т1(Вм+Вэ) = Т2(Вм-Вэ) тогда Т1/Т2 = (Вм-Вэ) /(Вм+Вэ) Также Т1*Вм = 30, Т2*Вм = 150, следовательно Т1/Т2 = 30/150 = 1/5, т. е. спуск по движущимуся эскалатору в пять раз быстрее чем подъем по нему. Далее (Вм-Вэ) /(Вм+Вэ) = 1/5, решаем… Вм/Вэ = 3/2, т. е мальчик движеться в полтора раза быстрее эскалатора. Пишем Вэ+3/2Вэ = Л/Т1 при спуске по движущемуся эскалатору 3/2 Вэ = Л/Т3 при спуске по неподвижному эскалатору, делим первое уравнение на второе 2,5/1,5 = Т3/Т1, отсюда Т3 = 2,5*Т1/1,5 Поскольку количество пройденных ступеней прямо пропорционально времени подъема-спуска, то при спуске по неподвижному эскалатору будет пройдено Х = 2,5*30/1,5 = 50 ступеней. Скорей всего правильно это_ X=длина экскалатора в ступеньках: 30+X=150-X X=150-X-30 X=120-X 2X=120 X=120/2 X=60 - кол-во ступенек, при недвижущемся экскалаторе
Пусть Т1, Т2 и Т3 время спуска, подъема и спуска по неподвижному эскалатору. Л – длина эскалатора, Вм – скорость мальчика, Вэ – скорость эскалатора. Имеем Т1(Вм+Вэ) = Л при движении по ходу эскалатора Т2(Вм-Вэ) = Л при движении против хода эскалатора, Далее приравниваем Т1(Вм+Вэ) = Т2(Вм-Вэ) тогда Т1/Т2 = (Вм-Вэ) /(Вм+Вэ) Также Т1*Вм = 30, Т2*Вм = 150, следовательно Т1/Т2 = 30/150 = 1/5, т. е. спуск по движущимуся эскалатору в пять раз быстрее чем подъем по нему. Далее (Вм-Вэ) /(Вм+Вэ) = 1/5, решаем… Вм/Вэ = 3/2, т. е мальчик движеться в полтора раза быстрее эскалатора. Пишем Вэ+3/2Вэ = Л/Т1 при спуске по движущемуся эскалатору 3/2 Вэ = Л/Т3 при спуске по неподвижному эскалатору, делим первое уравнение на второе 2,5/1,5 = Т3/Т1, отсюда Т3 = 2,5*Т1/1,5 Поскольку количество пройденных ступеней прямо пропорционально времени подъема-спуска, то при спуске по неподвижному эскалатору будет пройдено Х = 2,5*30/1,5 = 50 ступеней. Скорей всего правильно это_ X=длина экскалатора в ступеньках: 30+X=150-X X=150-X-30 X=120-X 2X=120 X=120/2 X=60 - кол-во ступенек, при недвижущемся экскалаторе
x=16+y
теперь подставим это в первое уравнение системы.
(16+y)^2-y^2=32
256+32y+y^2-y^2=32
256+32y=32
32y=32-256
32y=-224
y=-7
теперь найдем х
х=16+y=16-7=9
ответ:(9;-7)