М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polibfbxbdbdbcb
polibfbxbdbdbcb
18.10.2021 22:18 •  Алгебра

, если кто-то знает , хотя бы без объяснений


, если кто-то знает , хотя бы без объяснений
, если кто-то знает , хотя бы без объяснений
, если кто-то знает , хотя бы без объяснений

👇
Ответ:
gallyamovdenis
gallyamovdenis
18.10.2021

Задание 1.

Выберем в \mathbb{R}^2 стандартный базис (то есть векторы (1,0) и (0,1)). В \mathbb{R}^4 выбираем тоже стандартный базис. Образы базисных векторов: F(1,0,0,0) = (1,1),\; F(0,1,0,0) = (-s_{2},-s_{4}) = (-2,-2),\; F(0,0,1,0) = (0,1),\; F(0,0,0,1) = (s_{1},s_{3}) = (1,2). Здесь уже есть два линейно независимых вектора: F(1,0,0,0) и F(0,0,1,0), а потому \mathrm{Im}\;F = \mathbb{R}^2 \Rightarrow \mathrm{dim}\;\mathrm{Im}\;F = 2 (а базис приведен чуть выше). Теперь ясно какая размерность ядра: \mathrm{dim}\; \mathbb{R}^{4} = \mathrm{dim}\;\mathrm{Im}\; F + \mathrm{dim}\;\mathrm{ker}\; F \Rightarrow \mathrm{dim}\;\mathrm{ker}\;F = 4 - 2 = 2. Элементы ядра должны удовлетворять системе \begin{cases}x-2y+t=0\\x-2y+z+2t=0\end{cases} \Rightarrow \begin{cases}z=-t\\x-2y+t=0\end{cases}. Уже отсюда можно было понять, что размерность ядра равна двум: четыре переменные и два уравнения, ограничивающие их. Тогда положив z=0, получим, например, решение x=2,\; y=1, а для z=1 подойдет x=3,\; y=1. Итого два вектора: (2,1,0,0),\; (3,1,1,-1). Линейная независимость этих векторов гарантирует, что они являются базисом ядра.

Задание 2.

Чтобы показать, что S является базисом в \mathbb{R}^2 достаточно показать, что она линейно независима (достаточно, поскольку вектора два, а размерность \mathbb{R}^2 равна двум). В нашем случае система состоит из одного вектора u_{1} = u_{2} = (1,2) и потому не может быть базисом в \mathbb{R}^2. Часть 2 решить все-таки не могу, поскольку S -- не базис.

Задание 3.

(A)

q_{1} = 3 = 3+0\cdot x+0\cdot x^2 \Rightarrow q_{1} = (3,0,0), q_{2} = x+6 = 6+1\cdot x+0\cdot x^2 \Rightarrow q_{2} = (6,1,0), q_{3} = 3x^2 = 0+0\cdot x + 3\cdot x^2 \Rightarrow q_{3} = (0,0,3).

(B)

Поскольку размерность \mathbf{P}_{2} равна трем, то для того чтобы показать, что (q_{1},q_{2},q_{3}) -- базис, достаточно показать, что они линейно независимы. Это легко видеть хотя бы потому, что ранг матрицы \left(\begin{array}{ccc}3&6&0\\0&1&0\\0&0&3\end{array}\right) равен трем (поскольку ее определитель, равный 9, ненулевой).

Задание 4.

В нашем случае имеем систему \begin{cases}x_{1}-x_2+2x_3-2x_{4}=0\\ 2x_2+3x_4=0 \end{cases}. Количество решений зависит от размерности пространства, которое задает данная система. По сути, можно рассматривать отображение F:\mathbb{R}^4\to \mathbb{R}^2 такое, что F(x_{1},x_{2},x_{3},x_{4}) = (x_{1}-x_{2}+2x_{3}-2x_{4},2x_{2}+3x_{4}). Тогда система задает ядро этого отображения, размерность которого в новой интерпретации ищется просто -- точно так же, как мы делали это в первой задаче. Образы базисных векторов: F(1,0,0,0) = (1,0),\; F(0,1,0,0) = (-1,2),\ldots дальше считать не стал, поскольку уже первые два вектора линейно независимы. Значит, размерность образа равна двум, но тогда ядро имеет размерность 4-2=2. Следовательно, ядро как множество бесконечно (было бы конечным только в случае нульмерного ядра). То есть имеем две свободные переменные. Например, систему можно свести к \begin{cases}x_{1}+2x_3-\dfrac{1}{2}x_{4}=0\\ x_2+\dfrac{3}{2}x_4=0 \end{cases}, тогда переменные x_{1},x_{2} будут базисными, а x_{3},x_{4} -- свободными. Ненулевое решение предъявить просто: (1,-3,0,2)Пространство решений есть ядро F,  а поскольку его размерность два, нам достаточно найти два линейно независимых решений системы. Одно мы уже нашли. Теперь положим x_{3}=1 и тогда (-1,-3,1,2) -- решение. Но это два линейно независимых решения, а потому они образуют базис пространства решений.

Задание 5.

1. В нашем случае A_{1} = \{(x,0,z)\in \mathbb{R}^{3}|2y+2z=0\} = \{(x,0,z)\in \mathbb{R}^{3}|y+z=0\}. Легко видеть, что берутся числа вида (x,0,z), то есть y=0 и потому z=0, значит, A_{1} состоит из тех и только тех чисел, у которых две последние координаты нулевые. Следовательно, A_{1} является подпространством, потому что это множество замкнуто относительно суммы ((a,0,0)+(b,0,0) = (a+b,0,0)) и умножения на скаляр.

2. A_{2} = \{(0,y,z)\in\mathbb{R}^3|2y+2z\geq 1\}. Несмотря на то что это множество замкнуто относительно суммы, оно не замкнуто относительно умножения на скаляр. В самом деле, например, (0,1,1) лежит в множестве, однако (0,-1,-1) -- не лежит. Следовательно, это множество не является подпространством.

3. A_{3} = \{(x,y,z)\in\mathbb{R}^{3}| x\leq 0,\; y\in\mathbb{R},\; z\geq 2\}. Здесь те же причины: (-1,0,2) лежит в множестве, а  (-1)\cdot (-1,0,2) = (1,0,-2) -- нет.

4,5(48 оценок)
Открыть все ответы
Ответ:
тут8
тут8
18.10.2021

Объяснение:

Обозначим за Х количество мест в ряду в 1-м зале

Тогда (Х+10) - количество мест в ряду во 2-м зале

420/Х - количество рядов в 1-м зале

480/(Х+10) - количество рядов во 2-м зале

420/Х-480/(Х+10)=5

приводим левую часть уравнения к общему знаменателю и складываем:

(420Х+4200-480Х)/Х(Х+10)=5

(4200-60Х)/(Х²+10Х)=5

делим обе части уравнения на 5:

(840-12Х)/(Х²+10Х)=1, или имеем право записать как:

840-12Х=Х²+10Х

Х²+22Х-840=0

Решая полученное квадратное уравнение, находим, что:

Х₁=20

Х₂=-42 данный корень не удовлетворяет условию задачи, поскольку количество мест в ряду не может быть отрицательным.

20 мест в ряду в 1-м зале

30 мест в ряду во 2-м зале (на 10 мест больше, чем в ряду первого зала)

21 ряд в 1-м зале

16 рядов во 2-м зале (на 5 рядов меньше, чем в первом зале

4,5(86 оценок)
Ответ:
diahochka
diahochka
18.10.2021
x-12 - время, за которое разгружает машину первый грузчик, мин;
x - время, за которое разгружает машину второй грузчик, мин;
\frac{1}{x-12}+\frac{1}{x}=8 - время, за которое разгружают машину оба грузчика, мин;
8*(\frac{1}{x-12}+\frac{1}{x})=1
\frac{8x}{x(x-12)}+\frac{8x-96}{x(x-12)}=1
\frac{8x}{x(x-12)}+\frac{8x-96}{x(x-12)}= \frac{x(x-12)}{x(x-12)}
8x+8x-96=x(x-12)
16x-96=x^2-12x
-x^2+16x+12x-96=0
-x^2+28x-96=0
a=-1 - старший коэффициент при x^2;
b=28 - второй коэффициент при x;
c=-96 - свободный член.
График функции - парабола с ветвями вниз, так как значение "a" при старшем коэффициенте x^2 меньше нуля.
Вычислим дискриминант:
D=b^2-4*a*c
D=28^2-4*(-1)*(-96)=784-384=400=20^2
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x_{1,2}= \frac{-bб \sqrt{D} }{2a}
x_1= \frac{-28+20 }{-2}= \frac{-8}{-2}=4
x_2= \frac{-28-20 }{-2}= \frac{-48}{-2}=24

Вспомним уравнение:
8*(\frac{1}{x-12}+\frac{1}{x})=1
Здесь в знаменателе первой дроби время работы первого грузчика записано как x-12.
Подставив поочередно корни квадратного уравнения в выражение x-12 можем сразу сделать вывод, что первый корень x_1=4 не подходит, так как время не может быть отрицательным. Следовательно ответ 24.

ответ: 24
4,8(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ