М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Чевапчичи
Чевапчичи
14.04.2020 07:18 •  Алгебра

Функция задана следующим правилом: каждому натуральному числу было поставлено в соответствие остаток при делении его на 9. Выберите правильные равенства f(12) = 3 f(15) = 7 f(423) = 0 f(100) = 1

👇
Ответ:
dinbili2
dinbili2
14.04.2020

f(12) = 3: да, 12 = 9 * 1 + 3.

f(15) = 7: нет, 15 = 9 * 1 + 6.

f(423) = 0: да, 423 = 9 * 47 + 0.

f(100) = 1: да, 100 = 9 * 11 + 1.

4,4(38 оценок)
Открыть все ответы
Ответ:
nastya200525
nastya200525
14.04.2020
Ладно попробуем попробуем повыделываться.
y^{''}+y^{'}-2y=-4+e^x
Перед нами линейное дифференциальное уравнение 2го порядка, с постоянными коэффициентами, к тому же неоднородное.
Общее решение неоднородного уравнения находится в виде суммы общего решения однородного уравнения (правую часть заменить на 0), и какого нибудь ненулевого частного решения неоднородного уравнения.
Приступим. Отработаем однородное уравнение
y^{''}+y^{'}-2y=0(2)
Cоответствующее характеристическое уравнение:
\lambda ^2+ \lambda-2=0(3)
(3) Обычное квадратное уравнение. Его корни:
\lambda_{1}= \frac{-1+ \sqrt{D} }{2}
\lambda_{2}= \frac{-1- \sqrt{D} }{2}
где D - дискриминант уравнения (3)
D=1-4*1*(-2)=1+8=9  Хороший дискриминант, корень нацело извлекается и
корни получаются действительные. Ладно продолжаем
\ \lambda_{1}= \frac{-1+ \sqrt{9} }{2}= \frac{2}{2} =1(4)
[tex] \lambda_{2}= \frac{-1-\sqrt{3} }{2}= \frac{-4}{2}=-2(5)
Общее решение однородного уравнения (2) получается в виде:
y(x)=C_{1}e^{\lambda_{1}x}+C_{2}e^{\lambda_{2}x}(6)
Где C_{1} и C_{2}произвольные константы (постоянные).
 С учетом (4), (5) общее решение (6) выглядит так:
y(x)=C_{1}e^x+C_{2}e^{-2x}(7)
Так, есть общее решение однородного уравнения. Теперь надо найти частное решение неоднородного.
 Частное решение ищем в таком виде:
y_{c}(x)=A+Bxe^x(8)
Где A и B некоторые коэффициенты, значения которых нам надо подобрать.
Подбирать будем так: Найдем 1-ю и 2-ю производные (8) и подставим их и (8) в уравнение (1) вместо y^{'}, y^{''} и y.
1-я производная частного решения:
y_{c}^{'}=(A+Bxe^x)^{'}=B(xe^x)^{'}=B(e^x+xe^x)=Be^x+Bxe^x(9)
2-я производная:
y_{c}^{''}=(Be^x+Bxe^x)^{'}=Be^x+Be^x+Bxe^x=2Be^x+Bxe^x(10)
Ну вот, подставляем (8), (9), (10) в уравнение (1):
(2Be^x+Bxe^x)+(Be^x+Bxe^x)-2(A+Bxe^x)=-4+e^x
Раскрываем скобки и перегруппировываем слагаемые в левой части:
(2Be^x+Bxe^x)+(Be^x+Bxe^x)-2(A+Bxe^x)=
=3Be^x+2Bxe^x-2A-2Bxe^x=3Be^x-2A
Таким образом получили такое соотношение для определения "неопределенных коэффициентов" A и B:
3Bxe^x-2A=-4+e^x(11)
Приравниваем коэффициенты в правой и левой частях (11) при одинаковых степенях е. получаем :
\left \{ {{-2A=-4} \atop {3B=1}} \right.
фактически простая система обычных линейных уравнений, решив которую, получаем:\left \{ {{A=2} \atop {B= \frac{1}{3} }} \right.  (12)
Теперь, с учетом (12), частное решение (8) примет вид:
y_{c}=2+ \frac{1}{3}x e^x(13)
Ну вот, объеденяя (7) и (13), получаем общее решение уравнения (1):
y(x)=C_{1}e^x+C_{2}e^{-2x}+2+ \frac{1}{3}x e^x(14)

Фуу! Кажется все! Проверку, выполнять пока не буду Надо чайку хлебнуть. Неленивый может сам подставить (14) в (1) и проверить получится ли равенство. :)
4,7(10 оценок)
Ответ:
razi2008900
razi2008900
14.04.2020
Можно взять первое число за х, второе за у. Получится, что х+у=20; х в квадрате - у в квадрате=80, разложим по разности квадратов на две скобки: (х-у)(х+у)=80. вторую скобку заменим на 20, известно из условия, получится, что х-у=80/20=4, не знаю как дальше, но думаю, что это будет полезно в решении я бы рассуждала так: сумма равна 20, значит оба числа четные, одно больше другого на 4, можно из первого примера, где сумма, заменить у на "х+4", и получится х+х+4=20; 2х=16; х=8, потом к 8 прибавим ту самую 4, которую ранее же и нашли, и получим второе число, очень надеюсь, что
4,5(44 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ