Область определения - это те числа, которые можно подставить вместо икса в первом номере мы можем подставлять вместо Х только те числа, при которых больше или равно 0, потому что нельзя извлечь квадратный корень из отрицательного числа. значит чтобы найти область определения, надо найти все иксы, при которых этот корень ≥0. вот это и запишем х-5≥0 х≥5, значит можно брать только икс равный 5 и любое число больше 5. записываем это х∈[5;+∞) поставили квадратную скобку, потому что само число 5 тоже входит в область определения, и потому что стоит знак не просто >, а ≥ ( есть равно) 2. Во втором примере дробь. Значит можно брать только те иксы, при которых знаменатель не равен 0, так как на 0 делить нельзя. Найдем чему не должен равняться икс, чтобы х(х+2)≠0, значит х≠0 или х≠-2 все остальные числа можно подставлять в эту дробь, тогда область определения это х∈(-∞;-2)U(-2;0)U(0;+∞) скобка круглая, потому что -2 и 0 не входят в число решений, а U-знак объединения 3. в третьем примере нет никаких ограничений, вместо икс можно подставить любое число х∈(-∞;+∞)
Пусть x - сумма всех учеников в первой группе до перехода, а y - количество учеников в этой группе. Тогда:
x/y = 22
Пусть k - сумма всех учеников во второй группе до перехода, а l - количество учеников в этой группе. Тогда:
k/l = 45
Известно, что при переходе ученика из второй группы в первую, средний у обоих групп повысился на 1, то есть:
(x+n)/(y+1)=23
(k-n)/(l-1)=46
Где n - количество ученика, который перешёл из второй группы в первую. Выразим n в обеих формулах:
n = 23(y+1)-x
n = -46(l-1)+k
Приравняем правые части этих уравнений:
23(y+1)-x = -46(l-1)+k
23y+23-x = k-46l+46
x и k мы можем выразить из двух первых формул, то есть:
x = 22y
k = 45l
Подставим правые части данных уравнений в уравнение выше:
23y+23-x = k-46l+46
23y+23-22y = 45l-46l+46
y+23 = 46-l
y+l = 46-23
y+l = 23
Поскольку y - количество учеников в первой группе, а l - количество учеников во второй группе, то y + l = 23 ученика в обеих группах.
23 ученика в обеих группах