М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
20Iulia
20Iulia
09.02.2020 16:22 •  Алгебра

12√0,36+10√0,01+√3600 розв'язати значення виразу

👇
Ответ:
robka2029
robka2029
09.02.2020

12 \sqrt{0.36 } + 10 \sqrt{0.01} + \sqrt{3600} = 12 \times 0.6 + 10 \times 0.1 + 60 = 7.2 + 1 + 60 = 68.2

4,5(23 оценок)
Открыть все ответы
Ответ:
мик104
мик104
09.02.2020
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Ответ:
Kamilamar
Kamilamar
09.02.2020
N1
а) 4sin³x -8sin²x -sinx +2 =0 ;
4sin²x(sinx-2) -(sinx -2) =0 ;
(sinx -2)(4sin²x -1) = 0 ⇔[ sinx -2 =0 ;4sin²x -1 =0. 
sinx -2 =0⇔sinx =2  ||  > 1 →нет решения.||
4sin²x -1= 0 ⇔4*(1-cos2x)/2 -1 = 0 ⇔cos2x =1/2 ⇒2x =±π/3 +2πk , k∈Z.

ответ: ±π/6 +πk , k∈Z.
---
б)  ;  
(1-cos²x) -2cosx +2 =0  * * *  можно заменить   t =cosx ,  |t| ≤1 * * *
cos²x +2cosx -3  =0 ⇒[cosx = -3(не имеет решения) ; cosx =1.

ответ: 2πk , k∈Z.
-------
N2
а)  ⇔ 7^(5x-1)(7 -1) =6⇔ 7^(5x -1)*6 =6⇔7^(5x -1) =1.
7^(5x -1) =7⁰ ⇒5x-1 =0 ;  x =0,2.
---
б)  ;  
ОДЗ :  { 2x+4 >0 ; 4x -7 >0 ; 4x -7 ≠1. ⇒ x∈(1,75 ;2) U(2 ;∞).

Lq(2x+4) =2Lq(4x-7)⇒Lq(2x+4) =Lq(4x-7)² ;2 x+4 =(4x -7)² ;
16x² -58x +45 =0 ;
D/4 =29² -16*45 =841 -720 =121 =11²
x₁= (29 -11)/16 = 9/8 ∉ОДЗ .
x₂ =(29 +11)/16 = 5/2.

ответ: 2,5.
-------
N3
а)    ;
y ' =( (x² +2x)' (3-4x) - (x² +2x)*(3-4x) ') /(3-4x)² =
( (2x+2)(3 -4x) +4(x² +2x)) /(3-4x)² = -2(2x² -3x-3)/(3-4x)².
---
б)  ;
y ' =((5x+2)⁴) ' =4*(5x+2)³*(5x+2)' =4*(5x+2)³*5=20(5x+2)³ .
-------
N3
а) а)  =(1/6)*x +C.
---
б)  =(-1/3 )интеграл( e^(4-3x)d(4-3x) =(-1/3)e^(4-3x) +C.

Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
Будьте любезны, господа хорошие, решите следующие уравнения: №1 a) б) №2 а) б) №3 ( вычислить произв
4,6(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ