1. у = -2х² + 5х + 3 у=-4 -4=-2x²+5x+3 2x²-5x=7 2x²-5x-7=0 D=(-5)²-4*2*(-7)=81 √81=9 x₁=(5+9)/2*2=14/4=3.5 y=-4 при x₁=3.5; x₂=-1 x₂=(5-9)/2*2=-4/4=-1 2. f(x)= х² – 2х – 8 График во вложении а. y>0 при x∈(-∞;-2)∪(4;+∞) y<0 при x∈(-2;4) б. f возрастает (x₂>x₁ => y₂>y₁) при x∈(1;+∞) f убывает (x₂>x₁ => y₂<y₁) при x∈(-∞;1) в. y(max)=∞ y(min)=-9 3. у = -5х² + 6х Парабола y=ax²+bx, a<0, значит ветви параболы направлены вниз. y(min)=-∞ y(max) принадлежит вершине параболы: х=-b/2a => x=-6/2*-5=0.6 y=-5*0.6²+6*0.6 => y=1.8 Координаты вершины (0.6;1.8) y(max)=1.8 4. Для нахождение точек пересечения 2-х графиков, решаем систему уравнений: {у = х + 2 {у = ( х – 2)² + 2 x²-4x+4+2=x+2 x²-5x+4=0 x₁+x₂=5 x₁*x₂=4 x₁=4 x₂=1 y₁=4+2=6 y₂=1+2=3 Точки пересечения: (4;6) и (1;3) Для графического решения, чертим грапфики обеих функций в одной кооординатной плоскости. График во вложеннии
Сумма всех их возрастов, стало быть:
x + х + (x+3) + (x+3) + (x+3) = 2х + 3(x+3) = 2х + 3x + 9 = 5x + 9 .
Значит сумма всех их возрастов должна быть на 9 больше,
чем какое-то число, кратное пяти.
Или иначе, если из суммы всех их возрастов вычесть 9,
то должно получиться какое-то число, кратное пяти.
34 – 9 = 25 – кратно пяти!
53 – 9 = 44 – не кратно пяти
76 – 9 = 67 – не кратно пяти
88 – 9 = 79 – не кратно пяти
92 – 9 = 83 – не кратно пяти
О т в е т : (а) на торте было 34 свечи.