площадь маленького квадрата равна 36 см², значит, его сторона 6 см², или квадрат 6х6.
разделить большой квадрат на 10 квадратов 6х6 и 2 равных прямоугольника можно таким образом:
6х6 l 6х6 l 6х6 l 6х6 l
6х6 l 6х6 l l l
6х6 l 6х6 l 6х18 l 6х18 l
6х6 l 6х6 l l l
значит, большой квадрат 24х24, два равных прямоугольника 6х18.
площадь прямоугольника равна 6*18=108 см²
площадь маленького квадрата равна 36 см², значит, его сторона 6 см², или квадрат 6х6.
разделить большой квадрат на 10 квадратов 6х6 и 2 равных прямоугольника можно таким образом:
6х6 l 6х6 l 6х6 l 6х6 l
6х6 l 6х6 l l l
6х6 l 6х6 l 6х18 l 6х18 l
6х6 l 6х6 l l l
значит, большой квадрат 24х24, два равных прямоугольника 6х18.
площадь прямоугольника равна 6*18=108 см²
· Преобразуем:
Функция разрывна в точках x = 0 (бесконечный разрыв), x = 1/7 (выколотая точка).
· Графиком функции является гипербола. Таблица точек для построения:
Готовый график смотреть на первой картинке.
· Прямая y = kx есть прямая, проходящая через начало координат. Коэффициент k задает ее угол наклона. Чтобы прямая пересекла график только в одной точке, пустим ее через найденную ранее выколотую точку (см. вторую картинку).
- это координаты выколотой точки. Подставим в уравнение:
Других случаев с одним пересечением нет: при k ∈ [0, +∞) пересечения отсутствуют, при k ∈ (-∞, -343) ∪ (-343, 0) пересечения два.
ответ: k = -343