1. Если не лезть в дебри, то рассмотрим такой многочлен: , где - коэффициент
Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то: Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х): Итак, доказали, что функция g(x)=g(-x) чётная.
Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно. Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х): Итак, доказали, что функция h(x)=-h(-x) нечётная.
После всего сказанного, имеем: f(x) = g(x) + h(x) функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.
2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций. Запишем нашу функцию в таком виде: В правильности такой записи легко убедиться, если в правой части произвести сложение.
Рассмотрим функцию: Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс: Функция g(x) чётная.
Рассмотрим функцию: и выясним её чётность. Функция h(x) нечётная.
Таким образом, , где g(x) - чётная, а h(x) - нечётная функция. Что и требовалось доказать.
* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.
строим график функции
у= х^3 кубическая парабола
х=0 , у= 0^3 = 0 ( 0, 0 ) 1 точка
х=1 , у= 1^3 = 1 ( 1 , 1 ) 2 точка
все остальные точки находят по этому прнципу. Пишу уже готовые точки
х 0 1 2 -1 -2
у 0 1 8 -1 -8
строим график у= -х это прямая
нужно найти только 2 точки, но я найду 4 для удобства построения
у= -х
х= 1 , у = -1 ( 1 , -1) 1 точка
х=2 , у= -2 ( 2 , -2) 2 точка
х= -1 , у= - ( -1) = 1 ( -1 , 1 ) 3 точка
х= -2 , у= - ( -2) = 2 ( -2 , 2) 4 точка
х 1 2 -1 -2
у -1 -2 1 2
точка пересечения двух графиков ( 0 , 0 )
как находить точки можешь не писать , а сразу таблицу с точками.