Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
х>-0,5
ответ: (-0,5;+беск.)
б) 3х=>-15|:3
х=>-5
ответ: [-5;+беск.)
2) а) 4х+-3<=-9
4х<=-9+-3
4х<=-6|:4, или 4х<=-12|:4
х<=-1,5, или х<=-3
ответ: (-беск.; -3]
б) 7х-2>11х
7х-11х>2
-4х>2|:(-4)
х<-0,5
ответ: (-беск.; -0,5)
3) а) 8х-7<3х+13
8х-3х<13+7
5х<20|:5
х<4
ответ: (-беск.; 4)
б) 4х+3=>8х+5
4х-8х=>5-3
-4х=>2|:(-4)
х<=-0,5
ответ: (-беск.; -0,5]
4) а) 2(3х-8)-12>4-6(7-2х)
6х-16-12>4-42+12х
-6х>-10|:(-6)
х<5/3
ответ: (-беск.; 5/3)