Обозначим скорость теплохода в стоячей воде х км/ч. тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2). А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2). Получаем 100(x-2)+64(x+2)=9(x+2)(x-2) 100x-200+64x+128=9(x²-4) 164x-72=9x²-36 9x²-36-164x+72=0 9x²-164x+36=0 D=164²-4*9*36=25600 √D=160 x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения x₂=(164+160)/18=324/18=18 ответ: скорость теплохода в стоячей воде 18 км/ч
(sina+cosa)^2 + (sina+ cosa^2 -2=2( sina+cosa)^2= = 2(sin^2 a +2sinacosa + cos^2 a ) -2 = 2(1+2sinacosa)-2=2 + 4sinacosa -2= = 4sinacosa Если уже изучили формулы двойного аргумента, то в ответе поkучим 2sin2a При решении воcпользовались формулой sin^2 a+cos^2 а =1 3) Упростить: sin^2 a +cos^2 a +ctg^2a= 1+ctg^2a=1/ sin^2 a. 4) ctga=cosa/sina. Sina нам известен, осталось найти сosa: =+- V(1-cos^2 a) =+- V( 1-sin^2a)=+-V(1-1/16)= +-V15/16 ( V- корень квадратный. Т.к cosa во второй четверти отрицателен,то из двух знаков +- оставим только минус. Итак cosa= - V15/4 (в этом выражении V относится только к числителю ) ctga=-V15/4:1/4 после сокращения на 4 получим ответ ctg= -V15 2) Разделим почленно все слагаемые на sin^2acos^2b получим дробь sin^2a+sin^2b-sin^2a*sin^2b+cos^2a*cos^2b = sin^2acos^2b 1/cos^2b+tg^2b-tg^2b+ctg^2a=1/cos^2b+ctg^2 a
тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2).
А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2).
Получаем
100(x-2)+64(x+2)=9(x+2)(x-2)
100x-200+64x+128=9(x²-4)
164x-72=9x²-36
9x²-36-164x+72=0
9x²-164x+36=0
D=164²-4*9*36=25600
√D=160
x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения
x₂=(164+160)/18=324/18=18
ответ: скорость теплохода в стоячей воде 18 км/ч