М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Георгий0015
Георгий0015
19.06.2020 08:59 •  Алгебра

Найдите все значения a, при которых уравнение |2|x|-a^2|=x-2a имеет ровно четыре различных решения

👇
Ответ:
1406052005
1406052005
19.06.2020

|2|x|-a^2|=x-2a

 

при х<2a решений нет (модуль неотрицательное выражение)

x>=2a

2|x|-a^2=x-2a (правая часть неотрицательная, опускаем внешний модуль левой части)

 

разбиваем на подуравнения в зависимости от х:

x>=2a и x>=0

2x-a^2=x-2a или

2x-a^2=-x+2a

или

x>=2a и x<0

-2x-a^2=x-2a или

-2x-a^2=-x+2a

 

x>=2a и x>=0

x=a^2-2a или 3x=a^2+2a

или

x>=2a и x<0

-3x=a^2-2a или -x=a^2+2a

 

x>=2a и x>=0

x=a^2-2a или x=(a^2+2a)/3

или

x>=2a и x<0

x=(2a-a^2)/3 или x=-a^2-2a

 

откуда видно что четыре решения будут в случае исполнения неравенств

a^2-2a>=2a и

a^2-2a>=0  и

(a^2+2a)/3>=2a и

(a^2+2a)/3>=0 и

(2a-a^2)/3>=2a и

(2a-a^2)/3<0 и

-a^2-2a>=2a и

-a^2-2a<0;

 

a^2-4a>=0 и

a(a-2)>=0 и

a^2+2a>=6a и

a^2+2a>=0 и

2a-a^2>=6a и

2a-a^2<0 и

-a^2-4a>=0 и

a^2+2a<0 ;

 

a(a-4)>=0 и

a(a-2)>=0 и

a^2-4a>=0 и

a(a+2)>=0 и

-a^2-4a>0 и

a^2-2a>0 и

a^2+4a<=0 и

a(a+2)<0;

 

a(a-4)>=0 и

a(a+2)>=0 и

a(a-2)>0 и

a(a+4)<=0;

 

a<=0 или a>=4

и

a<=-2 или a>=0

и

a<0 или a>2

и

-4<=a<=0

 

обьединяя

[-4;-2)

теперь найдем при которых а некоторые из решений совпадают (т.е.когда выполняется одно из равенств)

a^2-2a=(a^2+2a)/3 или

a^2-2a=(2a-a^2)/3 или

a^2-2a=-a^2-2a или

(a^2+2a)/3=(2a-a^2)/3 или

(a^2+2a)/3=a^2-2a или

(2a-a^2)/3=-a^2-2a

 

a=0 или

3a-6=a+2 или

3a-6=2-a или

a-2=-a-2 или

a+2=2-a или

a+2=2a-6 или

2-a=-a-6

 

a=0 или 

2a=8 или

4a=8 или

2a=0 или

2a=0 или

a=8

 

a=0 или а=4 или а=0 или а=8 -  в надйенный промежуток не попадают

 

ответ: при а є [-4;-2) данное уравнение имеет четыре различных решения

4,4(82 оценок)
Открыть все ответы
Ответ:
FTA72артем
FTA72артем
19.06.2020
Треугольник ЕСF будет подобен треугольнику АЕD по двум углам (угол CEF равен углу AED, как вертикальные углы, угол ADE будет равен углу FCE, как накрест лежащие углы, образованные при пересечении двух параллельных прямых BC и AD секущей CD). В подобных треугольниках стороны пропорциональны, значит СF/AD = EC/ED. AB=CD=8 (как противоположные стороны параллелограмма). СD= EC+ED, а отсюда ED = CD-EC. Пусть EC=х, тогда CF/AD = х/8-х, 2/5=х/8-х, 5х=2(8-х), 7х=16, х= 2 целых 2/7. Значит, EC = 2 целых 2/7. Тогда ED=CD-EC=8-2 целых 2/7= 5 целых 5/7
4,4(78 оценок)
Ответ:
lizakocirbenck
lizakocirbenck
19.06.2020
К1, К2, К3, К4, К5      С3, С4, С5, С6
3 и 5 - простые числа, т. е. получаем комбинации К1-С3-К3 и К1-С5-К5.
Поскольку карточка К1 только одна, объединяем эти две комбинации в одну:
К3-С3-К1-С5-К5.
Среди оставшихся С3 и С4 нет кратного К5. Это означает, что карточка К5 - обязательно крайняя.
Дальше продолжаем расладывать в левую сторону.
Кратным к К3 является С6: С6-К3-С3-К1-С5-К5.
Делителем С6, помимо К3, является К2: К2-С6-К3-С3-К1-С5-К5.
Кратным к К2 является С4: С4-К2-С6-К3-С3-К1-С5-К5.
Делителем С4 является К4: К4-С4-К2-С6-К3-С3-К1-С5-К5.
Сумма чисел на средних трёх картах: 6+3+3=12.
4,4(13 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ