1) при а=0 и а≠-1 уравнение будет линейным и имеет один корень: -(a+1)x+a=0 x=a/(a+1) - корень уравнения 2) при а≠0 уравнение будет квадратным и имеет два корня, если его дискриминант больше нуля. D=(-(a+1))²-4*a*a=a²+2a+1-4a²=1+2a-3a² 1+2a-3a²>0 3a²-2a-1<0 D=(-2)²-4*3*(-1)=4+12=16=4² a(1)=(2+4)/(2*3)=6/6=1 a(2)=(2-4)/(2*3)=-2/6=-1/3 3(a-1)(a+ 1/3)<0 + - + _____________-1/3___________1_________
a∈(-1/3;1) и a≠0, т.е. при a∈(-1;0)U(0;1/3) уравнение имеет 2 корня
1) при а=0 и а≠-1 уравнение будет линейным и имеет один корень: -(a+1)x+a=0 x=a/(a+1) - корень уравнения 2) при а≠0 уравнение будет квадратным и имеет два корня, если его дискриминант больше нуля. D=(-(a+1))²-4*a*a=a²+2a+1-4a²=1+2a-3a² 1+2a-3a²>0 3a²-2a-1<0 D=(-2)²-4*3*(-1)=4+12=16=4² a(1)=(2+4)/(2*3)=6/6=1 a(2)=(2-4)/(2*3)=-2/6=-1/3 3(a-1)(a+ 1/3)<0 + - + _____________-1/3___________1_________
a∈(-1/3;1) и a≠0, т.е. при a∈(-1;0)U(0;1/3) уравнение имеет 2 корня
x²+6x-7=0
a=1 b=6 c=-7
D= b²-4ac= 6²-4×1×(-7)=64
x1= (-6+√64)\2=(-6+8)/2=1
х2=(-6-√64)\2=(-6-8)/2=-7
х1=1
х2=-7
Обратная теорема Виета
Если х1+х2= -b
x1×x2= c
то мы решили уравнение верно
х1+х2= -7+1=-6 -b
х1×х2= -7×1=-7 c
Все вышло верно