ответ:
получи подарки и
стикеры в вк
нажми, чтобы узнать больше
августа 14: 23
найти все значения а при которых сумма квадратов корней уравнения х^2+(2-а)х-а-3=0 будет наименьшей
ответ или решение1
архипова вера
рассмотрим корни уравнения: х^2 + (2 - а) * х - (а-3) = 0, и применим теорему bиета:
х1 + х2 = -(2 - а); х1 * х2 = - а - 3.(1)
найдём искомые (х1² + х2²) = (х1 + х2)² - 2 * х1 * х2.
все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
объяснение:
у=2х-7 искомое уравнение.
Объяснение:
Составьте уравнение вида y = kx+ b, график которого проходит через данные точки C (-3;-13) и D (1;-5)
Формула, при которой можно построить уравнение прямой по двум точкам:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)
C (-3;-13) и D (1;-5)
х₁= -3 у₁= -13
х₂=1 у₂= -5
Подставляем данные в формулу:
(х-(-3)/(1-(-3)=(у-(-13)/(-5)-(-13)
(х+3)/4=(у+13)/8 перемножаем крест-накрест, как в пропорции:
8(х+3)=4(у+13)
8х+24=4у+52
-4у= -8х+52-24
-4у= -8х+28
4у=8х-28/4
у=2х-7 искомое уравнение.
см фото
Объяснение: