Здесь важна последняя цифра числа 1007. Т.к. число всё время умножается на само себя, то от последней цифры (7) зависит, какая будет последняя цифра числа, возведённого в степень. Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7. Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1. Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.
Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант: Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7.
Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1.
Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.