чтобы решить уравнение нужно привести всё к общему знаменателю
х 7 8
___ - =
х-2 х + 2 х² - 4
нижний знаменатель х² - 4 можно разложить по формуле разности квадрата. вы её наверняка проходили.
получится (х-2)(х+2)
всё уравнение имеет вид
х 7 8
___ - =
х-2 х + 2 (х-2)(х+2)
ну а теперь домножаем до одного знаменателя. в первом столбике умножим на (х+2), во втором на (х-2), а третий так и оставим.
получится:
х(х+2) - 7(х-2) - 8
= 0;
(х-2)(х+2)
когда раскроем скобки получится:
х² + 2х - 7х + 14 - 8
= 0;
(х-2)(х+2)
сверху получится х² - 5х + 6 = 0
находим через дискриминант. D = b² - 4ac;
D = 25 - 4*6 = 25-24 = 1;
х₁= -b + √D
= 5 + 1
2a 2
x₁ = 3;
х₂ = 5-1
___ = 2
2
всё уравнение имеет вид
(x-2)(x-3)
= 0;
(х-2)(х+2)
сократив дробь получим
х-3
___ = 0;
х + 2
т.к. делить на ноль нельзя, то х+2 ≠0
х ≠ -2
ответ: х∋(-∞;-2)(-2;+∞)
на самом деле это несложное уравнение, просто я пыталась как можно больше объяснить свои действия :)
а)f'(x) =6x-6x²=6x(1-x). Критические точки из уравнения 6х(1-х)=0.
х=0 и х=1.
Обе точки на данном интервале. -1___-___0___+___1-__2 .
Знаки можно не определять, а обойтись только сравнением значений.
у(-1)=3*(-1)²-2*(-1)³ = 5.
у(0)=0
у(1)=1
у(2)=-4. Сравниваем. Наибольшее равно 5, наименьшее равно -4.
Во втором полная аналогия, f'(x)=3x²-12x=3x(x-4).
Критические точки 0 и 4, на интервале только 0.
Вычисляем у(-2)=-32, у(0)=1, у(1)=-4. Наибольшее равно 1, наименьшее -32.
в)f'(x)=5cosx-2sin2x.
Критические точки из уравнения 5cosx-4sinx*cosx=0
cosx=0 или sinx=5/4. x=π/2, а во втором корней нет. Сравниваем
у(0)=0+1=1, у(π/2)=5-1=4 и у(π) 0+1=1. Наибольшее 4, наименьшее 1.
a) (а+b)(6-c)
b) (x+5)(x-1)
Объяснение:
a) a(6-c)+b(6-c)=(а+b)(6-c)
b) x^2+5x-x-5=x(x-1)+5(x-1)=(x+5)(x-1)