По формуле:
Зная это получаем:
Известно что:
отсюда получаем:
Получаем 2 уравнения:
это табличное значение синуса и получается 2 решения:
аналогично получаем 2 решения:
Теперь обратим внимание, что эти 4 решения можно записать в 2 решения в виде:
Теперь надо найти при каких значениях k и n решения лежат на отрезке
Для этого решаем 2 неравенства
1)
Так как к у нас принадлежит целым числам, то получается что к=0,1,2
2) Теперь ищем n, аналогично:
Поскольку n принадлежит целым числам, то получается что n=0,1
первое число дает остаток 1 при делении на 4
значит куб первого числа при делении на 4 даст такой же остаток как и 1 в кубе, т.е как число 1*1*1=1
число 1 при делении на 4 дает остаток 1
итого куб первого числа при делении на 4 даст остаток 1
второе число дает остаток 3 при делении на 4
значит куб второго числа при делении на 4 даст такой же остаток как и 3 в кубе, т.е. как число 3*3*3=27
число 27 при делении на 4 дает остаток 3
сумма кубов первого и второго чисел при делении на 4 даст такой же остаток какой даст при делении на 4 сумма остатков чисел при делении на 4, т.е. как число 1+3=4,
так как 4 при делении на 4 дает остаток 0, то
сумма кубов этих чисел кратна 4
----------------------------------
второй
так как первое число при делении на 4 дает остаток 1, то его можно записать в виде 4n+1, где n - некоторое целое число
аналогично второе можно записать в виде 4k+3, где k - некоторое целое число
сумма кубов этих чисел
а значит сумма кубов делится нацело на 4. Доказано