М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nyoken
Nyoken
05.02.2022 08:06 •  Алгебра

1. Дана функция: у = х^2 - 2x – 8 а) запишите координаты вершины параболы;
b) определите, в каких четвертях находится график функции;
с) запишите ось симметрии параболы; d) найдите точки пересечения графика с осями координат;
е) постройте график функции.

👇
Ответ:
Angelina13112003
Angelina13112003
05.02.2022

Объяснение:

У=х^2-2х-8

а)

Х= - b/2a

X= - (-2)/2×1=2/2=1

y=1^2-2×1-8=1-2-8= - 9

(1 ; - 9) вершина

б)

Во всех четвертях

с)

Х= - b/2a

X= - (-2)/2×1=2/2×1=1

X=1 ось симметрии

d)

Х=0

У=0^2-2×0-8= - 8

(0; - 8) точка пересечения с осью у

У=0

х^2-2х-8=0

D=(-2)^2-4×1×(-8)=4+32=36

X1=(2-6)/2= - 2

X2=(2+6)/2=4

y1=(-2)^2-2×(-2)-8=4+4-8=0

y2=4^2-2×4-8=16-8-8=0

(-2;0) (4;0) точки пересечения с осью х

е) на рисунке

Х - 1 0 1. 2 3

У - 5 - 8 - 9 - 8 - 5


1. Дана функция: у = х^2 - 2x – 8 а) запишите координаты вершины параболы; b) определите, в каких че
4,8(70 оценок)
Открыть все ответы
Ответ:
lidiyaerox28
lidiyaerox28
05.02.2022

ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

4,4(37 оценок)
Ответ:
marushakeduard
marushakeduard
05.02.2022

Кк – это аббревиатура, имеющая два значения, либо «ok, ok», либо миллион

или ты имеешь ввиду

Объяснение:

Кики — уменьшительная форма имени Кристина:

Кики с Монпарнаса (1901—1953) — французская певица, актриса, художница, натурщица.

Ки́ки — девочка, юная ведьма, занимающаяся курьерской доставкой в полете на метле, главная героиня серии детских книг Эйко Кадоно, мультфильма Хаяо Миядзаки «Ведьмина служба доставки» и одноименного художественного фильма.

Ки́ки — пушистый игрушечный заяц, принадлежащий девочке Джесси из мультсериала «Студенты».

Кики́ — гигантская черепаха-долгожитель.

Кики, Габи (род. 1995) — камерунский футболист.

4,5(87 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ