ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .
Для вычисления подобных пределов удобно использовать правило Лопиталя.
Кк – это аббревиатура, имеющая два значения, либо «ok, ok», либо миллион
или ты имеешь ввиду
Объяснение:
Кики — уменьшительная форма имени Кристина:
Кики с Монпарнаса (1901—1953) — французская певица, актриса, художница, натурщица.
Ки́ки — девочка, юная ведьма, занимающаяся курьерской доставкой в полете на метле, главная героиня серии детских книг Эйко Кадоно, мультфильма Хаяо Миядзаки «Ведьмина служба доставки» и одноименного художественного фильма.
Ки́ки — пушистый игрушечный заяц, принадлежащий девочке Джесси из мультсериала «Студенты».
Кики́ — гигантская черепаха-долгожитель.
Кики, Габи (род. 1995) — камерунский футболист.
Объяснение:
У=х^2-2х-8
а)
Х= - b/2a
X= - (-2)/2×1=2/2=1
y=1^2-2×1-8=1-2-8= - 9
(1 ; - 9) вершина
б)
Во всех четвертях
с)
Х= - b/2a
X= - (-2)/2×1=2/2×1=1
X=1 ось симметрии
d)
Х=0
У=0^2-2×0-8= - 8
(0; - 8) точка пересечения с осью у
У=0
х^2-2х-8=0
D=(-2)^2-4×1×(-8)=4+32=36
X1=(2-6)/2= - 2
X2=(2+6)/2=4
y1=(-2)^2-2×(-2)-8=4+4-8=0
y2=4^2-2×4-8=16-8-8=0
(-2;0) (4;0) точки пересечения с осью х
е) на рисунке
Х - 1 0 1. 2 3
У - 5 - 8 - 9 - 8 - 5