М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ma4newarita
ma4newarita
18.09.2022 12:04 •  Алгебра

Между городом и деревней 8383 км. Велосипедист выехал из деревни в город со скоростью 13 13 км/ч. Вырази формулой зависимость пройденного расстояния s s от времени в пути t t и найди значение ss , если в пути он пробыл 2,1 2,1 часа.

👇
Ответ:
ilyaokorokov777
ilyaokorokov777
18.09.2022

S=v*t

Объяснение:

S=13*2.1=27.9км

4,4(83 оценок)
Открыть все ответы
Ответ:
Cat09112005
Cat09112005
18.09.2022
1. 12*(13\24 - 7\12 - 1\6)=12*(13/24-14/24-4/24)=12* (-5/24)=-2,5
2. 60*500+4000=34000
3. 800тыс-100%
(880-800)тыс-х%
х=80*100/800=10%увеличилось за год число абонентов этой компании
4.

За один день расходуется 70 пакетиков, конференция длится 6 дней, значит, на все дни конференции потребуется  пакетиков чая. Так как в одной упаковке содержится 50 пакетиков чая, то для проведения конференции нужно купить

  420/50( дробь)=42/5 (дробь) = 8 2/5( дробь упаковок,

то есть 9 упаковок чая.

ответ 9 упаковок.

5. А3,Б1,В4,Г2 

6. Р(А)=0,71
Р=1-Р(А)=1-0,71=0,29
ответ: 0,29

7. 1) 80*(600:100)=480 р будет стоить окрашенная пряжа
2)50*(600:300)=100 р будет стоить краска
3)70*(600:100)=420 р будет стоить неокрашенная пряжа
4)420+100=520 р
ответ. Выгоднее купить окрашенную пряжу. Общая стоимость будет равна 480 рублей.

8. V1 = π*R²*H = π * 9²* 8 = 648π
V2 = π*r²*h = π *4²*9 = 144π
V1/V2 = 648π/144π
V1/V2 = 4.5 раза

9. 1) Егор самый стар­ший из ука­зан­ных четырёх че­ло­век.
4) Денис млад­ше Егора.

10. 100a + 10b + c = 4x + y = 15z + y
A + b = 2c

X = 15z/4 = 3,75z

10 (10a + b) + (a + b)/2 = (20 (10a + b) + a + b)/2 = (201a + 21b)/2    

Z = 4, 8, 12
X= 15, 30, 45  

200a + 20b + a + b = 8x + r = 30z + r = 120 + r
201a + 21b = 120 + r  
67a + 7b = 40 + r  

Этому ряду условий отвечает, например, число 243.
Крайняя справа цифра - 3 - равна среднему арифметическому чисел 2 и 4, и 243 = 4*60 + 3 = 15*16 + 3 - остатки от деления этого числа на 4 и 15 равны.

11.

В условии даны все три расстояния между A, C и D. Выясним сначала, как расположены эти три бензоколонки.

Бензоколонки A и C разбивают кольцевую дорогу на две дуги. Если бы бензоколонка D находилась на меньшей дуге, то сумма расстояний от A до D и от D до C была равна расстоянию от A до C. Но это не так.

Значит, бензоколонка D расположена на большей дуге, поэтому длина большей дуги между A и C равна AD + DC = 25 + 35 = 60 км. Следовательно, длина кольцевой дороги равна60 км + AC = 100 км.

Так как BA = 50 км, то A и B диаметрально противоположны. Значит, расстояние от B до C равно 50 - 40 = 10 км ответ б)10 км

4,4(4 оценок)
Ответ:
килр
килр
18.09.2022

ответ:931

Объяснение:1. Заметим, что 735 имеет следующее разложение на простые множители:

735=72⋅3⋅5,

отсюда следует, что числа x, y, z состоят из тех же простых чисел 7, 3, 5:

 x=7a1⋅3a2⋅5a3;

 y=7b1⋅3b2⋅5b3;

 z=7c1⋅3c2⋅5c3.

При этом  

 0≤a1,b1,c1≤2;

 0≤a2,b2,c2≤1;

 0≤a3,b3,c3≤1.

 2. По правилу нахождения наименьшего общего кратного получим

НОК(7a1⋅3a2⋅5a3;7b1⋅3b2⋅5b3;7c1⋅3c2⋅5c3)=7max(a1,b1,c1)⋅3max(a2,b2,c2)⋅5max(a3,b3,c3).

 3. Итак, задача свелась к нахождению числа решений системы уравнений:

 

⎨max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.

Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.

 4.  Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.

Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.

5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.

Напомним, что  0≤a2,b2,c2≤1.

Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел  a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.

6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем

 19⋅7⋅7=931.

Итак, исходное уравнение имеет ровно 931 решение.

4,6(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ