Метод матем индукции 1) проверим делимость на 3 при n=1 при n=1 4n^3+6n^2+5n+9=4+6+5+9=24 - делится на 3 2) предположим что делится на 3 при n=k при n=к 4n^3+6n^2+5n+9=4k^3+6k^2+5k+9=(3k^3+6k^2+3k+9)+(k^3+2k) - делится на 3 значит (k^3+2k) - делится на 3, так как (3k^3+6k^2+3k+9) делится на 3 3) проверим делимость на 3 при n=k+1 при n=к+1 4n^3+6n^2+5n+9=4(к+1)^3+6(к+1)^2+5(к+1)+9= =(3(к+1)^3+6(к+1)^2+3(к+1)+9)+((к+1)^3+2(к+1)) = A+B A=(3(к+1)^3+6(к+1)^2+3(к+1)+9) - делится на 3 B=(к+1)^3+2(к+1)=k^3+3k^2+3k+1+2k+2=(k^3+2k)+(3k^2+3k+3) = C+D C = (k^3+2k) - делится на 3 (см пункт 2) ) D = (3k^2+3k+3) - делится на 3 значит B=C+D - делится на 3 значит 4n^3+6n^2+5n+9 при n=k+1 делится на 3 так как n=k+1 4n^3+6n^2+5n+9 = A+B <<< доказано методом математической индукции >>>>
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
Объяснение:
1. -(√2-3)⁴=((√2-3)²)²=-(2-6√2+9)²=-(11-6√2)²=-121+132√2-72=-193+132√2.
2. -193+132√2-144√2=-193-12√2.
3. (√(7-3√5))*(3+√5)= (√(7-3√5))*(√(3+√5)²)= (√(7-3√5))*(√(9+6√5+5))=
= (√(7-3√5))*(√(14+6√5))=√(2*(7-3√5)*(7+3√5))=
=√(2*(49-45))=√(2*4)=2√2
4. 2√2-193-12√2=-193-10√2.