1) F(x) = 4x - x^3/3 + C F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10 C = 13 F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования y = x^2 y = 6 - x x^2 = 6 - x x^2 + x - 6 = 0 (x + 3)(x - 2) = 0 Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) = = 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) = = 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования 2sin x = sin x sin x = 0 x1 = 0; x2 = pi Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) = = |cos pi - cos 0| = |-1 - 1| = |-2| = 2
х - запланированная скорость
1620/х (время за которое должен был проехать) = (4*1620)/(9*х)+2+(5*1620)/((х+5)*9)
1620/х = 720/х+2+900/(х+5)
810/х=360/х+1+450/(х+5)
450/х=1+450/(х+5)
450(х+5)=х(х+5)+450х
450х+2250=х²+5х+450х
х²+5х-2250
дискриминант = 25+4*2250=95²
х1=-50 - не подходит
х2=45 км/ч - первоначальная скорость. тогда скорость после задержки х+5=50км/ч
2.
пусть скорость течения- х км/ч, тогда
v(км/ч) t(ч) s(км)
плот х 72/х
72
пароход (х+20) 72/(х+20)
зная, что разность времени движения составила 15 ч, составим уравнение по времени
72x+1440-72x=15x² +300x
-15x²-300x+1440=0 |: 15
-x²-20x+96=0
d=400+4*96=784
x₁=(20+28)/-2 = -24 (не удовлетворяет условию)
х₂=(20-28)/-2= 4
ответ: скорость течения 4 км/ч