Если числа натуральные, то каждое следующее число больше предыдущего числа на единицу))) например: 2; 3; 4; 5;... в общем виде это можно записать так: n; (n+1); (n+2); (n+3);... 1) сумму трех последовательных натуральных чисел, меньшее из которых равно n: n + n+1 + n+2
четное число: 2n последовательные чётные натуральные числа: 2n; 2(n+1); 2(n+2); 2(n+3);... например: 8; 10; 12; 14;... (здесь n=4) например: 4; 6; 8;... (здесь n=2) 2) произведение трех последовательных чётных натуральных чисел, большее из которых равно 2k: 2(k-2) * 2(k-1) * 2k
Можно взять первое число за х, второе за у. Получится, что х+у=20; х в квадрате - у в квадрате=80, разложим по разности квадратов на две скобки: (х-у)(х+у)=80. вторую скобку заменим на 20, известно из условия, получится, что х-у=80/20=4, не знаю как дальше, но думаю, что это будет полезно в решении я бы рассуждала так: сумма равна 20, значит оба числа четные, одно больше другого на 4, можно из первого примера, где сумма, заменить у на "х+4", и получится х+х+4=20; 2х=16; х=8, потом к 8 прибавим ту самую 4, которую ранее же и нашли, и получим второе число, очень надеюсь, что
2x^3 + 7x^2 + 2x - 3 = (2x^3 + 2x^2) + (5x^2 + 5x) - (3x + 3) = (2x^2 + 5x - 3)(x + 1) = 0
Корни второй скобки x = -3 и x = -1/2.
ответ. -3, -1, 1/2.