М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JuliaVolk05
JuliaVolk05
10.01.2023 19:17 •  Алгебра

Докажите неравенство:
(x-3)^2>x(x-6)
y^2+1≥2(5y-12)
,

👇
Ответ:
елмира1
елмира1
10.01.2023

решение смотри на фотографии


Докажите неравенство: (x-3)^2>x(x-6) y^2+1≥2(5y-12) ,
4,5(47 оценок)
Ответ:
ubdjf
ubdjf
10.01.2023

(x-3)^2>x(x-6)

(х-3)²-х(х-6)>0

х²+9-6х-х²+6х>0

9>0

Утверждение верно для всех х

y^2+1≥2(5y-12)

у²+1-2(5у-12)≥0

у²+1-10у+24≥0

у²-10у+25≥0

(у-5)²≥0

Квадрат любого выражения неотрицателен.

Утверждение верно для всех х

4,8(70 оценок)
Открыть все ответы
Ответ:
1995timoha30
1995timoha30
10.01.2023
1) sin²β - cos²(α - β) + 2cosα·cosβ·cos(α - β) = sin²β + cos(α - β)·(2cosα·cosβ - cos(α - β)) = sin²β + cos(α - β)·(2cosα·cosβ - (cosα·cosβ + sinα·sinβ)) = sin²β + (cosα·cosβ + sinα·sinβ)·(cosα·cosβ - sinα·sinβ) = sin²β + cos²α·cos²β - sin²α·sin²β = sin²β·(1 - sin²α) + cos²α·cos²β = sin²β·cos²α + cos²α·cos²β = cos²α·(sin²β + cos²β) = cos²α
2) cos²β + cos²(α - β) - 2cosα·cosβ·cos(α - β) = cos²β + cos(α - β)·(cos(α - β) - 2cosα·cosβ) = cos²β + cos(α - β)·(cosα·cosβ + sinα·sinβ - 2cosα·cosβ) = cos²β + (cosα·cosβ + sinα·sinβ)·(sinα·sinβ - cosα·cosβ) = cos²β + sin²α·sin²β - cos²α·cos²β = cos²β·(1 - cos²α) + sin²α·sin²β = cos²β·sin²α + sin²α·sin²β = sin²α·(sin²β + cos²β) = sin²α
4,6(86 оценок)
Ответ:
Golpio
Golpio
10.01.2023
Решение
1)найти стационарные точки 
f(x)=x^4-200x^2+56
f`(x) = 4x³ - 400x 
4x³ - 400x = 0
4x*(x² - 100) = 0
4x = 0, x₁ = 0
x² - 100 = 0 
x² = 100
x₂ =  - 10
x₃ = 10
ответ:  x₁ = 0 ; x₂ =  - 10 ; x₃ = 10  - стационарные точки
2) определить интервалы возрастания функций
f(x)=x^3-x^2-x^5+23
1. Находим интервалы возрастания и убывания.
 Первая производная.
f'(x) = -5x⁴ + 3x² - 2x
или
f'(x) = x * (-5x³ + 3x - 2)
Находим нули функции.
 Для этого приравниваем производную к нулю
x * (-5x³ + 3x - 2) = 0
Откуда:
x₁ = - 1
x₂ = 0
(-1; 0)  f'(x) > 0 функция возрастает 
3) определить интервалы убывания функций 
f(x)=x^3-7,5x^2+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 15x
или
f'(x) = x*(3x - 15)
Находим нули функции. Для этого приравниваем производную к нулю
x*(3x - 15) = 0
Откуда:
x₁ = 0
x₂ = 5
 (0; 5)  f'(x) < 0 функция убывает
 4) вычислить значение функции в точке максимума
f(x)=x^3-3^2-9x+1
Решение.
Находим первую производную функции:
y' = 3x² - 9
Приравниваем ее к нулю:
3x² - 9 = 0
x² = 3
x₁ = - √3
x₂ = √3
Вычисляем значения функции 
f(- √3) = - 8 + 6√3 точка максимума
f(√3) = - 6√3 - 8 
fmax = - 8 + 6√3
ответ: fmax = - 8 + 6√3
4,6(63 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ