( x + 2xy ) * ( 2x - 1 )
x-y x^2-2xy+y^2 x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2)* ( 2x - 1 )
(x-y) (x^2-2xy+y^2 ) x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
(x^3-xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x(x^2-y^2)*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x((x-y)(x+y)))*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x*(2x - 1 )
(x^2-2xy+y^2 )
x*(2x - 1 )
(x-y)^2
подставляем
-2(-4-1) = 10
9 9
I. Надеюсь, что под корнем всё выражение)
• Перепишем исходную функцию:
y = 4√(x² - 8x + 15)
D (y) - ?
• Выражение под корнем должно быть неотрицательным, т.е. получаем следующее неравенство:
x² - 8x + 15 ≥ 0
• Вводим функцию:
ƒ (x) = x² - 8x + 15 , D (ƒ) = ℝ
• График парабола, ветви вверх
• Ищем нули функции:
x² - 8x + 15 = 0
По теореме, обратной теореме Виета:
x(1) = 5 и x(2) = 3
• Строим числовую ось, отмечаем точки и учитывая направление ветвей параболы ищем промежутки знакопостоянства
• Получается, что ƒ (x) ≥ 0 на: ( - ♾ ; 3] ⋃ [5 ; + ♾ )
⇒ D (y) : ( - ♾ ; 3] ⋃ [5 ; + ♾ )
ответ: ( - ♾ ; 3] ⋃ [5 ; + ♾ )
II. Но если под корнем только был x, то гораздо проще:
y = 4√x² - 8x + 15
D (y) - ?
x² ≥ 0
А квадрат любого действительного числа всегда будет неотрицательным, ⇒ D (y) = ℝ
ответ : ℝ