Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
Зная формулу площади трапеции S=(a+b)/2*h, где а и в -основания трапеции, h-высота трапеции.
В данном случае, чтобы найти площадь трапеции необходимо найти высоту трапеции h
Если мы опустим перпендикуляр (т.е. высоту) на нижнее основание, мы получим прямоугольный треугольник с гипотенузой (это боковая сторона трапеции), равной 15 см и катет, равный другой боковой стороне 9 см.
По теореме Пифагора находим второй катет прямоугольного треугольника (высоту h)
Он равен: h=sqrt(15^2 -9^2)=sqrt144=12
Находим площадь трапеции: (9+18)/2*12=162 (см^2)
ответ: 162 см^2