Количество игр: 2
:
Выигрыш (В) - 3 очка
Ничья (Н) - 1 очко
Проигрыш (П) - 0 очков
P(Н) = 0,1
Так как общая вероятность равна 1 или 100%, то:
P(В+П) = 1 - 0,1 = 0,9
По условию Р(В) = Р(П), тогда:
Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45
Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничьяР(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71
∉ и И
Объяснение:
Во первых множество всех натуральных чисел обычно обозначают буквой N.
2. Если к натуральным числам присоединить число 0 и все целые отрицательные числа: −1,−2,−3,−4... — то получится множество целых чисел. Это множество обычно обозначают буквой Z.
3. Если к множеству целых чисел присоединить все обыкновенные дроби, то получится множество рациональных чисел. Это множество обычно обозначают буквой Q.
4. ∈ — знак принадлежности (элемент принадлежит множеству).
5. ∉ — элемент не принадлежит множеству.
Мы можем упростить каждый член, используя тригонометрические тождества:
sin π/3 = √3/2
cos π/6 = √3/2
cos π = -1
Подставляя эти значения, получаем:
sin π/3 - cos π/6 + cos π = √3/2 - √3/2 - 1
Упрощая дальше, получаем:
sin π/3 - cos π/6 + cos π = -1
Следовательно, значение выражения равно -1.