24 см.
Объяснение:
Пусть один катет прямоугольного треугольника будет а см , а другой bсм.
Тогда площадь равна 0,5*а* b, а квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:
Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.
Решим квадратное уравнение:
Если b=6, то а=8
Если b=8, то а=6
Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)
P= 6+8+10 = 24 (см)
m = -b/2a = - (-3)/2*(-1) = -1,5 - координата абсциссы.
Подставим теперь в функцию
y = - (-1.5)² - 3 * (-1.5) + 1 = 3,25
(-1.5; 3.25) - координаты вершины параболы.
у = х+5 - линейная функция. Графиком линейной функции является прямая, которая проходит через точки (0;5), (-5;0)
Графики пересекаются в точке (-2;3), где x=-2 и y=3 - решения системы уравнения