Обычно функции y = [x] и y = {x} определятся так: y = [x] - наибольшее целое число, не превосходящее x y = {x} ≡ x - [x] - дробная часть x
График функции y = [x] - набор ступенек, y = n, если n <= x < n + 1 . График y = [x] + 4 - тот же график, но сдвинутый на 4 единицы вверх.
График функции y = {x} на полуинтервале [0, 1) совпадает с y = x, а дальше повторяется с периодом 1. y = {x + 2} ничем не отличается, так как прибавление целого числа никак не меняется дробную часть. Можно понять это и по-другому: y = {x + 2} это график y = {x}, сдвинутый на 2 единицы влево, но так как функция периодична с периодом 1, ничего не изменится.
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
Объяснение: 6(x+3)=5(3x-2)
6x+18=15x-10;
6x-15x=-10-18;
-9x=-28;
x=28/9
x=3 1/9.