ответ:1) (5а+3)+(-3а-4)=5а+3-3а-4=2а-1
(5а+ 3)-(-3а-4)=5а+3+3а+4=8а+7
2) (7х2+3х)+(-2х-1)=7х2+3х-2х-1=7х2+ 1х-1
(7х2+3х)-(-2х-1)= 7х2+3х+2х+1=7х2+ 5х+1
3)( 8b2 + 2b - 4)+( 5 - 3b - 9b2)= 8b2 + 2b – 4+5 - 3b - 9b2=-b2-b+1
( 8b2 + 2b - 4)-( 5 - 3b - 9b2)= 8b2 + 2b – 4 -5+3b+9b2=17b2+ 5b-9
4) (11y - 12 - y3)+( 14 - 12y + y3)= 11y - 12 - y3+14 - 12y + y3=-y+y3+2
(11y - 12 - y3)-( 14 - 12y + y3)= 11y - 12 - y3-14+12y-y3=23y-2y3-26
5) (6 + mn + 2)+( 4 - mn - m2)= 6 + mn + 2+4 - mn - m2=12-mn-m2
(6 + mn + 2)-( 4 - mn - m2)= 6 + mn + 2-4+mn+m2=4+2mn+m2
Объяснение:
не благодарите
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює