Через исследование функции на экстремум. Производную возьмем Максимум и минимум функции достигается в точках, где производная равна 0. по т. Виета x1 = 1; x2 = -2. Единица в наш отрезок не попадает, значит, либо наибольшее, либо наименьшее значение будет в точке -2. Подставим -2 в исходное уравнение функции: В точке 1 значение функции примет минимальное: -3,5, но в наш отрезок эта точка не входит. Можно подставить точку -3, но там функция будет равняться 4,5. Значит, минимальное значение функция примет в точке 0. Функция там будет равняться нулю. Таким образом, сумма наибольшего и наименьшего значений на отрезке будет равняться 10+0=10
Площадь треугольника равна 1/*a*b*sinA. Поскольку треугольник равносторонний, то а=b, а sinA=sin60=V3/2. Записываем площадь 1/2*a^2*V3/2=3*V3 (^2 читай "в квадрате", V - читай "корень квадратный"). Получаем a^2=12 => a=V12=2V3. В равностороннем треугольнике медианы, высоты и биссектрисы совпадают и делятся в отношении 1:3. Точка их пересечения будет центром описанной вокруг треугольника окружности. Следовательно R окружности равен 1/3 высоты треугольника. Найдем высоту. S=1/2a*h=3*V3 => 1/2*2V3*h=3*V3 => h=3 R=2/3y=2
Производную возьмем
Максимум и минимум функции достигается в точках, где производная равна 0.
по т. Виета x1 = 1; x2 = -2.
Единица в наш отрезок не попадает, значит, либо наибольшее, либо наименьшее значение будет в точке -2.
Подставим -2 в исходное уравнение функции:
В точке 1 значение функции примет минимальное: -3,5, но в наш отрезок эта точка не входит. Можно подставить точку -3, но там функция будет равняться 4,5. Значит, минимальное значение функция примет в точке 0. Функция там будет равняться нулю. Таким образом, сумма наибольшего и наименьшего значений на отрезке будет равняться 10+0=10