М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
9Kira9
9Kira9
08.08.2020 12:59 •  Алгебра

1. 3sin^2(2x)+7cos(2x)=3 2. cos^4(x/2)-cos^2(x/2)=0 3. ctg(3x/2)=1/√3 4. 1-ctg(4x-4pi)=0 5. ctg(4pi/√x)=-√3

👇
Ответ:
1.3sin ^{2} 2x+7cos2x=3
ОДЗ: x∈R
3sin ^{2}2x+7cos2x-3=0
3sin ^{2} 2x+7cos2x-3cos ^{2} 2x-3sin ^{2} 2x=0
-3cos ^{2} 2x+7cos2x=0
cos2x(3cos2x+7)=0
[cos2x=0 ;            [x=\pi /4+ \pi n/2; n∈Z
[3cos2x+7=0;       [x=\pi -arccos7/3+ \pi n; n∈Z

2. cos^4(x/2)-cos^2(x/2)=0
ОДЗ: х∈R
cos ^{2} x/2(cos ^{2} x/2-1)=0
cos²x/2=0;    1+сosx/2=0;  x= П+2Пn; n∈Z
cos²x/2=1;  1+сosx/2=1;    x=2Пn; n∈Z

3. ctg(3x/2)=1/√3
ОДЗ:х≠2Пn/3;n∈Z
3х/2=П/3+Пn; n∈Z
3x=2П/3+2Пn; n∈Z
х=2П/9+2Пn/3; n∈Z

4.1-ctg(4x-4pi)=0
ОДЗ: x≠5Пn/4;n∈Z
1+ctg4x=0
4х= -П/4+Пn;n∈Z
х= -П/16+Пn/4;n∈Z
4,4(25 оценок)
Открыть все ответы
Ответ:
skidan2002
skidan2002
08.08.2020

Задача. При каких значениях параметра a система

\displaystyle \left \{ {{(a-1)x - 2ay = 2 - 4a,} \atop {ax + (a+2)y = 3 }} \right.

имеет бесконечное множество решений?

Решение. Система линейных уравнений, которая имеет вид

\displaystyle \left \{ {{a_{1}x + b_{1}y = c_{1},} \atop {a_{2}x + b_{2}y = c_{2},}} \right.

допускает три варианта решений:

1. Имеет одно решение:

\dfrac{a_{1}}{a_{2}} \neq \dfrac{b_{1}}{b_{2}}

2. Не имеет решений:

\dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} \neq \dfrac{c_{1}}{c_{2}}

3. Имеет бесконечное количество решений:

\dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} = \dfrac{c_{1}}{c_{2}}

Таким образом, заданная система линейных уравнений будет иметь бесконечное количество решений, если:

\dfrac{a - 1}{a} = \dfrac{-2a}{a+2} = \dfrac{2 - 4a}{3}.

Следовательно, нужно рассмотреть три пары уравнений, из которых нужно выбрать корень (корни), который встречается у всех трех уравнений:

1) ~ \dfrac{a - 1}{a} = \dfrac{-2a}{a+2}; ~~~ (a-1)(a+2)=-2a^{2}; ~~~ a_{1} = -1, ~ a_{2} = \dfrac{2}{3};

2) ~ \dfrac{-2a}{a+2} = \dfrac{2 - 4a}{3}; ~~~ {-}6a = (a+2)(2-4a); ~~~ a_{1}=-1, ~ a_{2}=1;

3) ~ \dfrac{a - 1}{a} = \dfrac{2 - 4a}{3}; ~~~ 3(a-1) = a(2-4a); ~~~ a_{1} = -1, ~ a_{2} = \dfrac{3}{4}.

Значит, при a=-1 все три выражения равны друг другу, откуда делаем вывод, что данная система будет иметь бесконечное количество решений.

ответ: a = -1.

4,6(38 оценок)
Ответ:
марина1925
марина1925
08.08.2020

|x+1|\leq 2a-1

Рассмотрим 3 случая: с отрицательной, нулевой и положительной правой частью.

1. Если 2a-1, то есть a.

Тогда предполагается, что модуль должен принимать значения, не большие некоторого отрицательного, то есть тоже отрицательные. Но модуль не может принимать отрицательных значений. Значит, в этом случае неравенство решений не имеет.

2. Если 2a-1=0, то есть a=\dfrac{1}{2}.

Получаем неравенство:

|x+1|\leq 0

Поскольку модуль не принимает отрицательных значений, достаточно решить уравнение:

|x+1|=0

x+1=0

x=-1

3. Если 2a-10, то есть a\dfrac{1}{2}, то получаем неравенство с положительной правой частью:

|x+1|\leq 2a-1

Заменим его следующим двойным неравенством:

-(2a-1)\leq x+1\leq 2a-1

1-2a\leq x+1\leq 2a-1

1-2a-1\leq x\leq 2a-1-1

-2a\leq x\leq 2a-2

Таким образом получаем ответ:

при a: решений нет

при a=\dfrac{1}{2}: x=-1

при a\dfrac{1}{2}: x\in[-2a;\ 2a-2]

4,4(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ