Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
Пусть емкость х л. х л чистой кислоты в сосуде содержалось, 2,5* - взяли в первый раз чистой кислоты после переливания 2,5 л 96% раствора кислоты. В сосуде осталось х - (литров) кислоты. После этого долили 2,5 л 80%-ного раствора кислоты, то есть 2,5* л кислоты. Тогда кислоты стало х - +2,5* = х – 2/5 (л) После этого отлили 2,5 л смеси, то есть л чистой кислоты. Тогда осталось ( х – 2/5) - л кислоты. К ним было добавлено еще 2,5* (литров) кислоты и ее стало ( х – 2/5) - +2 л С другой стороны, известно, что получится 89%-ный раствор кислоты, и так как емкость сосуда х л, то в нем содержится 0,89х (л) кислоты. Получится уравнение: ( х – 2/5) - +2 = 0,89х Упрощая, 7х2 – 80х +100 = 0 Корни х=10, х=0,7. Так как х>2,5, то х=10. ответ. Емкость сосуда 10 литров.