Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
Найдем, в каких пределах может изменяться сума цифр трехзначного числа:
- минимальная сумма цифр равна 1 (у числа 100)
- максимальная сумма цифр равна 27 (у числа 999)
Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.
- сумма цифр числа 19 равна 1+9=10
- сумма цифр числа 27 равна 2+7=9
Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.
Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.
Рассмотрим случай, когда в записи числа используются одинаковые цифры:
9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел
Рассмотрим случай, когда в записи числа не используются одинаковые цифры:
9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел
Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.
ответ: 45
\ - дробная черта
529=23 * 23
Д=1-4 * 4 * (-33)=1+528=529=23
х первое= -1-23\8= -24\8= -3
х второе= -1+23\8= 22\8=2,75