М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
адамчик2
адамчик2
20.04.2020 04:36 •  Алгебра

Дан многочлен p(x)=x^5+a(4)x^4+a(3)x^3+a(2)x^2+a(1)x+a(0), про который известно что р(2014)=1,р(2015)=2, р(2016)=3, р(2017)=4, р(2018)=5. найдите р(2013).

👇
Ответ:
Evgenevgenevgen
Evgenevgenevgen
20.04.2020
P(x) = (x-2014)(x-2015)(x-2016)(x-2017)(x-2018)+x-2013
P(2014) = (2014-2014)(x-2015)(x-2016)(x-2017)(x-2018)+2014-2013=1
P(2015) = (x-2014)(2015-2015)(x-2016)(x-2017)(x-2018)+2015-2013=2
P(2013) = (2013-2014)*(2013-2015)*(2013-2016)*(2013-2017)(2013-2018)+2013-2013 = -120 - это ответ
4,4(26 оценок)
Открыть все ответы
Ответ:
DetasGames
DetasGames
20.04.2020

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений

x

2

+

6

x

+

1

,

4

=

0

,

8

x

2

7

x

=

0

,

x

2

4

9

=

0

имеет вид

a

x

2

+

b

x

+

c

=

0

,

где x - переменная, a, b и c - числа.

В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.

Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x - переменная, a, b и c - некоторые числа, причём

a

0

.

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax2+bx+c=0, где

a

0

, наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения

x

2

11

x

+

30

=

0

,

x

2

6

x

=

0

,

x

2

8

=

0

Если в квадратном уравнении ax2+bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x2+7=0, 3x2-10x=0, -4x2=0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:

1) ax2+c=0, где

c

0

;

2) ax2+bx=0, где

b

0

;

3) ax2=0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax2+c=0 при

c

0

переносят его свободный член в правую часть и делят обе части уравнения на a:

x

2

=

c

a

x

1

,

2

=

±

c

a

Так как

c

0

, то

c

a

0

Если

c

a

>

0

, то уравнение имеет два корня.

Если

c

a

<

0

, то уравнение не имеет корней (квадратный корень из отрицательного числа извлекать нельзя).

Для решения неполного квадратного уравнения вида ax2+bx=0 при

b

0

раскладывают его левую часть на множители и получают уравнение

x

(

a

x

+

b

)

=

0

{

x

=

0

a

x

+

b

=

0

{

x

=

0

x

=

b

a

Значит, неполное квадратное уравнение вида ax2+bx=0 при

b

0

всегда имеет два корня.

Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax2+bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение

x

2

+

b

a

x

+

c

a

=

0

Преобразуем это уравнение, выделив квадрат двучлена:

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

(

b

2

a

)

2

+

c

a

=

0

x

2

+

2

x

b

2

a

+

(

b

2

a

)

2

=

(

b

2

a

)

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

2

c

a

(

x

+

b

2

a

)

2

=

b

2

4

a

c

4

a

2

x

+

b

2

a

=

±

b

2

4

a

c

4

a

2

x

=

b

2

a

+

±

b

2

4

a

c

2

a

x

=

b

±

b

2

4

a

c

2

a

Подкоренное выражение называют дискриминантом квадратного уравнения ax2+bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.

D

=

b

2

4

a

c

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:

x

1

,

2

=

b

±

D

2

a

, где

D

=

b

2

4

a

c

Очевидно, что:

1) Если D>0, то квадратное уравнение имеет два корня.

2) Если D=0, то квадратное уравнение имеет один корень

x

=

b

2

a

.

3) Если D<0, то квадратное уравнение не имеет корней, т.к. извлекать корень из отрицательного числа нельзя.

Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D < 0).

При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:

1) вычислить дискриминант и сравнить его с нулём;

2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x2+px+q=0 обладают свойством:

{

x

1

+

x

2

=

p

x

1

x

2

=

q

надеюсь правильно

4,4(80 оценок)
Ответ:
fairytailguil
fairytailguil
20.04.2020

1)Задание

Интервал (часы) 0-1 1-2 2-3 3-4

Частота                   3 9  12     6

30-100%              х=(6*100)/30

6-х%                    х=20%- выполняют домашнее более трех частот

2)Задание

а)2016

б)20%

3)Задание

СОРИ НЕ ЗНАЮ

4)Задание

Определим моменты времени, когда камень находился на высоте ровно 9 метров. Для этого решим уравнение h(t)=9:

Проанализируем полученный результат: поскольку по условию задачи камень брошен снизу вверх, это означает, что в момент времени t=0,6(с) камень находился на высоте 9 метров, двигаясь снизу вверх, а в момент времени t=3(с) камень находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее девяти метров 2,4 секунды.

ответ: 2,4.

5)Задание

Пусть х- скорость лодки в стоячей воде;

тогда х-2 и х+2 скорость лодки соответственно против течения и по течению

8/(x-2) время против течения

12/(x+2)-время по течению

в сумме по условию это составило 2 часа

8/(x-2)+12/(x+2)=2

4/(x-2)+6/(x+2)=1

(4x+8+6x-12)=x^2-4

10x-4=x^2-4

x=10

4,6(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ